These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 18497359)

  • 1. Shape selectivity in primate frontal eye field.
    Peng X; Sereno ME; Silva AK; Lehky SR; Sereno AB
    J Neurophysiol; 2008 Aug; 100(2):796-814. PubMed ID: 18497359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frontal eye field activity enhances object identification during covert visual search.
    Monosov IE; Thompson KG
    J Neurophysiol; 2009 Dec; 102(6):3656-72. PubMed ID: 19828723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural control of visual search by frontal eye field: effects of unexpected target displacement on visual selection and saccade preparation.
    Murthy A; Ray S; Shorter SM; Schall JD; Thompson KG
    J Neurophysiol; 2009 May; 101(5):2485-506. PubMed ID: 19261711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search.
    Thompson KG; Hanes DP; Bichot NP; Schall JD
    J Neurophysiol; 1996 Dec; 76(6):4040-55. PubMed ID: 8985899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppression of task-related saccades by electrical stimulation in the primate's frontal eye field.
    Burman DD; Bruce CJ
    J Neurophysiol; 1997 May; 77(5):2252-67. PubMed ID: 9163356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radial motion bias in macaque frontal eye field.
    Xiao Q; Barborica A; Ferrera VP
    Vis Neurosci; 2006; 23(1):49-60. PubMed ID: 16597350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural activity in the frontal eye fields modulated by the number of alternatives in target choice.
    Lee KM; Keller EL
    J Neurosci; 2008 Feb; 28(9):2242-51. PubMed ID: 18305257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Similar prevalence and magnitude of auditory-evoked and visually evoked activity in the frontal eye fields: implications for multisensory motor control.
    Caruso VC; Pages DS; Sommer MA; Groh JM
    J Neurophysiol; 2016 Jun; 115(6):3162-73. PubMed ID: 26936983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time course of attentional modulation in the frontal eye field during curve tracing.
    Khayat PS; Pooresmaeili A; Roelfsema PR
    J Neurophysiol; 2009 Apr; 101(4):1813-22. PubMed ID: 19176609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Area MT neurons respond to visual motion distant from their receptive fields.
    Zaksas D; Pasternak T
    J Neurophysiol; 2005 Dec; 94(6):4156-67. PubMed ID: 16120662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell-type-specific synchronization of neural activity in FEF with V4 during attention.
    Gregoriou GG; Gotts SJ; Desimone R
    Neuron; 2012 Feb; 73(3):581-94. PubMed ID: 22325208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cognitively directed spatial selection in the frontal eye field in anticipation of visual stimuli to be discriminated.
    Zhou HH; Thompson KG
    Vision Res; 2009 Jun; 49(10):1205-15. PubMed ID: 18501402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of experience on the representation of object-centered space in the macaque supplementary eye field.
    Moorman DE; Olson CR
    J Neurophysiol; 2007 Mar; 97(3):2159-73. PubMed ID: 17202234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of the contrast response function by electrical microstimulation of the macaque frontal eye field.
    Ekstrom LB; Roelfsema PR; Arsenault JT; Kolster H; Vanduffel W
    J Neurosci; 2009 Aug; 29(34):10683-94. PubMed ID: 19710320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reliability of macaque frontal eye field neurons signaling saccade targets during visual search.
    Bichot NP; Thompson KG; Chenchal Rao S; Schall JD
    J Neurosci; 2001 Jan; 21(2):713-25. PubMed ID: 11160450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronometry of visual responses in frontal eye field, supplementary eye field, and anterior cingulate cortex.
    Pouget P; Emeric EE; Stuphorn V; Reis K; Schall JD
    J Neurophysiol; 2005 Sep; 94(3):2086-92. PubMed ID: 15944228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence and limitations of popout in the selection of salient visual stimuli by area V4 neurons.
    Burrows BE; Moore T
    J Neurosci; 2009 Dec; 29(48):15169-77. PubMed ID: 19955369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of shape encoding in primate dorsal and ventral visual pathways.
    Lehky SR; Sereno AB
    J Neurophysiol; 2007 Jan; 97(1):307-19. PubMed ID: 17021033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Composition and topographic organization of signals sent from the frontal eye field to the superior colliculus.
    Sommer MA; Wurtz RH
    J Neurophysiol; 2000 Apr; 83(4):1979-2001. PubMed ID: 10758109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frontal eye field microstimulation induces task-dependent gamma oscillations in the lateral intraparietal area.
    Premereur E; Vanduffel W; Roelfsema PR; Janssen P
    J Neurophysiol; 2012 Sep; 108(5):1392-402. PubMed ID: 22673327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.