BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

397 related articles for article (PubMed ID: 18497916)

  • 1. Quantification of electrical field-induced flow reversal in a microchannel.
    Pirat C; Naso A; van der Wouden EJ; Gardeniers JG; Lohse D; van den Berg A
    Lab Chip; 2008 Jun; 8(6):945-9. PubMed ID: 18497916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of electrokinetically driven microfluidic T-mixer using frequency modulated electric field and channel geometry effects.
    Yan D; Yang C; Miao J; Lam Y; Huang X
    Electrophoresis; 2009 Sep; 30(18):3144-52. PubMed ID: 19764063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrokinetic flow control in microfluidic chips using a field-effect transistor.
    Horiuchi K; Dutta P
    Lab Chip; 2006 Jun; 6(6):714-23. PubMed ID: 16738721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of zeta potential of electroosmotic flow in a microchannel using a reduced-order model.
    Park HM; Hong SM; Lee JS
    Biomed Microdevices; 2007 Oct; 9(5):751-60. PubMed ID: 17530411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system.
    Lima R; Wada S; Tanaka S; Takeda M; Ishikawa T; Tsubota K; Imai Y; Yamaguchi T
    Biomed Microdevices; 2008 Apr; 10(2):153-67. PubMed ID: 17885805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dielectrophoretic focusing of particles in a microchannel constriction using DC-biased AC flectric fields.
    Zhu J; Xuan X
    Electrophoresis; 2009 Aug; 30(15):2668-75. PubMed ID: 19621378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electroosmotic shear flow in microchannels.
    Mampallil D; van den Ende D
    J Colloid Interface Sci; 2013 Jan; 390(1):234-41. PubMed ID: 23089595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of wall-molecule interactions on electrokinetic transport of charged molecules in nanofluidic channels during FET flow control.
    Oh YJ; Garcia AL; Petsev DN; Lopez GP; Brueck SR; Ivory CF; Han SM
    Lab Chip; 2009 Jun; 9(11):1601-8. PubMed ID: 19458869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Joule heating effects on electroosmotic flow in insulator-based dielectrophoresis.
    Sridharan S; Zhu J; Hu G; Xuan X
    Electrophoresis; 2011 Sep; 32(17):2274-81. PubMed ID: 21792988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffusioosmotic flow in rectangular microchannels.
    Hoshyargar V; Nezameddin Ashrafizadeh S; Sadeghi A
    Electrophoresis; 2016 Mar; 37(5-6):809-17. PubMed ID: 26995195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numeric simulation of heat transfer and electrokinetic flow in an electroosmosis-based continuous flow PCR chip.
    Gui L; Ren CL
    Anal Chem; 2006 Sep; 78(17):6215-22. PubMed ID: 16944904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated and temperature-controlled micro-PIV measurements enabling long-term-stable microchannel acoustophoresis characterization.
    Augustsson P; Barnkob R; Wereley ST; Bruus H; Laurell T
    Lab Chip; 2011 Dec; 11(24):4152-64. PubMed ID: 21989571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electroosmotic flow measurements in a freely suspended liquid film: Experimhents and numerical simulations.
    Hussein Sheik A; Bandulasena HCH; Starov V; Trybala A
    Electrophoresis; 2017 Oct; 38(20):2554-2560. PubMed ID: 28314051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Directional flow induced by synchronized longitudinal and zeta-potential controlling AC-electrical fields.
    van der Wouden EJ; Hermes DC; Gardeniers JG; van den Berg A
    Lab Chip; 2006 Oct; 6(10):1300-5. PubMed ID: 17102843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication and analysis of spatially uniform field electrokinetic flow devices: theory and experiment.
    Skulan AJ; Barrett LM; Singh AK; Cummings EB; Fiechtner GJ
    Anal Chem; 2005 Nov; 77(21):6790-7. PubMed ID: 16255575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical analysis of field-modulated electroosmotic flows in microchannels with arbitrary numbers and configurations of discrete electrodes.
    Chao K; Chen B; Wu J
    Biomed Microdevices; 2010 Dec; 12(6):959-66. PubMed ID: 20668948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manipulating particles in microfluidics by floating electrodes.
    Yalcin SE; Sharma A; Qian S; Joo SW; Baysal O
    Electrophoresis; 2010 Nov; 31(22):3711-8. PubMed ID: 20945412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring microchannel electroosmotic mobility and zeta potential by the current monitoring method.
    Shao C; Devoe DL
    Methods Mol Biol; 2013; 949():55-63. PubMed ID: 23329435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AC field induced-charge electroosmosis over leaky dielectric blocks embedded in a microchannel.
    Zhao C; Yang C
    Electrophoresis; 2011 Feb; 32(5):629-37. PubMed ID: 21290390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic chemical cytometry based on modulation of local field strength.
    Wang HY; Lu C
    Chem Commun (Camb); 2006 Sep; (33):3528-30. PubMed ID: 16921434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.