These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 18498062)

  • 1. Phylogenetic proximity revealed by neurodevelopmental event timings.
    Nagarajan R; Clancy B
    Neuroinformatics; 2008; 6(2):71-9. PubMed ID: 18498062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Translating developmental time across mammalian species.
    Clancy B; Darlington RB; Finlay BL
    Neuroscience; 2001; 105(1):7-17. PubMed ID: 11483296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ttime: an R package for translating the timing of brain development across mammalian species.
    Nagarajan R; Darlington RB; Finlay BL; Clancy B
    Neuroinformatics; 2010 Oct; 8(3):201-5. PubMed ID: 20824390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational models of ethanol-induced neurodevelopmental toxicity across species: Implications for risk assessment.
    Gohlke JM; Griffith WC; Faustman EM
    Birth Defects Res B Dev Reprod Toxicol; 2008 Feb; 83(1):1-11. PubMed ID: 18161053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The importance of developmental timing in cortical specification.
    Kennedy H; Dehay C
    Perspect Dev Neurobiol; 1993; 1(2):93-9. PubMed ID: 8087537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular phylogeny analysis using correlation distance and spectral distance.
    Sabarish RA; Thomas T
    Int J Data Min Bioinform; 2014; 10(4):391-406. PubMed ID: 25946885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Web-based method for translating neurodevelopment from laboratory species to humans.
    Clancy B; Kersh B; Hyde J; Darlington RB; Anand KJ; Finlay BL
    Neuroinformatics; 2007; 5(1):79-94. PubMed ID: 17426354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling transformations of neurodevelopmental sequences across mammalian species.
    Workman AD; Charvet CJ; Clancy B; Darlington RB; Finlay BL
    J Neurosci; 2013 Apr; 33(17):7368-83. PubMed ID: 23616543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphological Characterization of the Developing Greater Cane Rat (Thryonomys swinderianus) Brain.
    Mustapha O; Ezekiel O; Olaolorun F; Awala-Ajakaiye M; Popoola E; Olude M; Olopade J
    Dev Neurosci; 2020; 42(2-4):114-123. PubMed ID: 33321497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Japan Monkey Centre Primates Brain Imaging Repository for comparative neuroscience: an archive of digital records including records for endangered species.
    Sakai T; Hata J; Ohta H; Shintaku Y; Kimura N; Ogawa Y; Sogabe K; Mori S; Okano HJ; Hamada Y; Shibata S; Okano H; Oishi K
    Primates; 2018 Nov; 59(6):553-570. PubMed ID: 30357587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phylogenetic relationship of a fossil macaque (Macaca cf. robusta) from the Korean Peninsula to extant species of macaques based on zygomaxillary morphology.
    Ito T; Lee YJ; Nishimura TD; Tanaka M; Woo JY; Takai M
    J Hum Evol; 2018 Jun; 119():1-13. PubMed ID: 29685750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phylogenetic analyses reveal that simian foamy virus isolated from Japanese Yakushima macaques (Macaca fuscata yakui) is distinct from most of Japanese Hondo macaques (Macaca fuscata fuscata).
    Hashimoto-Gotoh A; Yoshikawa R; Nakagawa S; Okamoto M; Miyazawa T
    Gene; 2020 Apr; 734():144382. PubMed ID: 31978513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mimetic Muscles in a Despotic Macaque (Macaca mulatta) Differ from Those in a Closely Related Tolerant Macaque (M. nigra).
    Burrows AM; Waller BM; Micheletta J
    Anat Rec (Hoboken); 2016 Oct; 299(10):1317-24. PubMed ID: 27343148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative Gross Anatomy of the Forelimb Arteries of the Japanese Monkey (
    Aversi-Ferreira TA; Freitas-Ferreira E; Aversi-Ferreira RAGMF; Cordeiro-de-Oliveira K; Lopes-de-Freitas G; Trevisan K; Cavalcante GF; Vasconcelos-da-Silva E; Figueredo-Silva S; Pereira RC; Couto DS; Rodrigues RC; de Abreu T
    Biomed Res Int; 2020; 2020():8635917. PubMed ID: 32724814
    [No Abstract]   [Full Text] [Related]  

  • 15. Phylogenetic ANOVA: Group-clade aggregation, biological challenges, and a refined permutation procedure.
    Adams DC; Collyer ML
    Evolution; 2018 Jun; 72(6):1204-1215. PubMed ID: 29682730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. mGAP: the macaque genotype and phenotype resource, a framework for accessing and interpreting macaque variant data, and identifying new models of human disease.
    Bimber BN; Yan MY; Peterson SM; Ferguson B
    BMC Genomics; 2019 Mar; 20(1):176. PubMed ID: 30841849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The insertions of the cruropedal muscles and implications for the locomotor evolution in primates.
    Takahashi Y; Matsumura A; Kimura K
    Z Morphol Anthropol; 2002 Mar; 83(2-3):291-303. PubMed ID: 12050899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiation and phylogeography in the Japanese macaque, Macaca fuscata.
    Marmi J; Bertranpetit J; Terradas J; Takenaka O; Domingo-Roura X
    Mol Phylogenet Evol; 2004 Mar; 30(3):676-85. PubMed ID: 15012947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Testing substitution models within a phylogenetic tree.
    Weiss G; von Haeseler A
    Mol Biol Evol; 2003 Apr; 20(4):572-8. PubMed ID: 12679552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Order-specific quantitative patterns of cortical gyrification.
    Pillay P; Manger PR
    Eur J Neurosci; 2007 May; 25(9):2705-12. PubMed ID: 17459107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.