BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 18498086)

  • 21. Transient expression of Bis protein in midline radial glia in developing rat brainstem and spinal cord.
    Choi JS; Lee JH; Shin YJ; Lee JY; Yun H; Chun MH; Lee MY
    Cell Tissue Res; 2009 Jul; 337(1):27-36. PubMed ID: 19415333
    [TBL] [Abstract][Full Text] [Related]  

  • 22. EphA4 signaling promotes axon segregation in the developing auditory system.
    Cramer KS; Bermingham-McDonogh O; Krull CE; Rubel EW
    Dev Biol; 2004 May; 269(1):26-35. PubMed ID: 15081355
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of vimentin and glial fibrillary acidic protein immunoreactivities in the brain of gray mullet (Chelon labrosus), an advanced teleost.
    Arochena M; Anadón R; Díaz-Regueira SM
    J Comp Neurol; 2004 Feb; 469(3):413-36. PubMed ID: 14730591
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Glial environment in the developing superior colliculus of hamsters in relation to the timing of retinal axon ingrowth.
    Wu DY; Jhaveri S; Schneider GE
    J Comp Neurol; 1995 Jul; 358(2):206-18. PubMed ID: 7560282
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Organization and development of brain stem auditory nuclei of the chicken: organization of projections from n. magnocellularis to n. laminaris.
    Parks TN; Rubel EW
    J Comp Neurol; 1975 Dec; 164(4):435-48. PubMed ID: 1206128
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of the delay lines in the nucleus laminaris of the chicken embryo revealed by optical imaging.
    Görlich A; Illy M; Friauf E; Wagner H; Luksch H; Löhrke S
    Neuroscience; 2010 Jun; 168(2):564-72. PubMed ID: 20394725
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Radial glia and astrocytes in developing and adult telencephalon of the lizard Gallotia galloti as revealed by immunohistochemistry with anti-GFAP and anti-vimentin antibodies.
    Yanes C; Monzon-Mayor M; Ghandour MS; de Barry J; Gombos G
    J Comp Neurol; 1990 May; 295(4):559-68. PubMed ID: 2358521
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lead exposure during development results in increased neurofilament phosphorylation, neuritic beading, and temporal processing deficits within the murine auditory brainstem.
    Jones LG; Prins J; Park S; Walton JP; Luebke AE; Lurie DI
    J Comp Neurol; 2008 Feb; 506(6):1003-17. PubMed ID: 18085597
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Organization and development of brain stem auditory nuclei of the chicken: dendritic development in N. laminaris.
    Smith ZD
    J Comp Neurol; 1981 Dec; 203(3):309-33. PubMed ID: 7320232
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Temporal and spatial patterns of glial differentiation in the surgically induced spinal open neural tube defect of chick embryos: astrocytic, radial glial and microglial differentiations.
    Sim KB; Chung YN; Cho SS; Cho BK; Kim M; Kim DW; Huh YD; Wang KC
    Childs Nerv Syst; 2002 Dec; 18(12):694-701. PubMed ID: 12483353
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Embryonic origins of auditory brain-stem nuclei in the chick hindbrain.
    Cramer KS; Fraser SE; Rubel EW
    Dev Biol; 2000 Aug; 224(2):138-51. PubMed ID: 10926755
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential expression of Eph receptors and ephrins in the cochlear ganglion and eighth cranial nerve of the chick embryo.
    Siddiqui SA; Cramer KS
    J Comp Neurol; 2005 Feb; 482(4):309-19. PubMed ID: 15669077
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of radial fibers in controlling the onset of myelination.
    Nakahara J; Takemura M; Gomi H; Tsunematsu K; Itohara S; Asou H; Ogawa M; Aiso S; Tan-Takeuchi K
    J Neurosci Res; 2003 May; 72(3):279-89. PubMed ID: 12692895
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Glial fibrillary acidic protein (GFAP)-positive radial-like cells are present in the vicinity of proliferative progenitors in the nucleus tractus solitarius of adult rat.
    Pecchi E; Dallaporta M; Charrier C; Pio J; Jean A; Moyse E; Troadec JD
    J Comp Neurol; 2007 Mar; 501(3):353-68. PubMed ID: 17245710
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Early development of intrinsic and synaptic properties of chicken nucleus laminaris neurons.
    Gao H; Lu Y
    Neuroscience; 2008 Apr; 153(1):131-43. PubMed ID: 18355968
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural proteins during brain development in the preterm and near-term ovine fetus and the effect of intermittent umbilical cord occlusion.
    Rocha E; Totten S; Hammond R; Han V; Richardson B
    Am J Obstet Gynecol; 2004 Aug; 191(2):497-506. PubMed ID: 15343227
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simple method for the culture of glial cells from embryonic rat brain: implications for regional heterogeneity and the radial glial lineage.
    Wilkie MB; Lauder JM
    J Neurosci Res; 1988; 21(2-4):220-5. PubMed ID: 3216422
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Coordinated Eph-ephrin signaling guides migration and axon targeting in the avian auditory system.
    Allen-Sharpley MR; Cramer KS
    Neural Dev; 2012 Aug; 7():29. PubMed ID: 22908944
    [TBL] [Abstract][Full Text] [Related]  

  • 39. GABAergic terminals in nucleus magnocellularis and laminaris originate from the superior olivary nucleus.
    Lachica EA; Rübsamen R; Rubel EW
    J Comp Neurol; 1994 Oct; 348(3):403-18. PubMed ID: 7844255
    [TBL] [Abstract][Full Text] [Related]  

  • 40. EphB2 regulates axonal growth at the midline in the developing auditory brainstem.
    Cramer KS; Cerretti DP; Siddiqui SA
    Dev Biol; 2006 Jul; 295(1):76-89. PubMed ID: 16626680
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.