These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 18498186)

  • 1. Anomalous dependence on the diffusion coefficients of the ionic relaxation time in electrolytes.
    Barbero G; Scalerandi M
    J Phys Chem B; 2008 Jun; 112(24):7273-9. PubMed ID: 18498186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relaxation times of an electrolytic cell subject to an external electric field: role of ambipolar and free diffusion phenomena.
    Alexe-Ionescu AL; Barbero G; Lelidis I; Scalerandi M
    J Phys Chem B; 2007 Nov; 111(46):13287-93. PubMed ID: 17973516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of external electric fields in enhancing ion mobility, drift velocity, and drift-diffusion rates in aqueous electrolyte solutions.
    Murad S
    J Chem Phys; 2011 Mar; 134(11):114504. PubMed ID: 21428629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of the compensated Arrhenius formalism to self-diffusion: implications for ionic conductivity and dielectric relaxation.
    Petrowsky M; Frech R
    J Phys Chem B; 2010 Jul; 114(26):8600-5. PubMed ID: 20552999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct measurements of ionic mobility of ionic liquids using the electric field applying pulsed gradient spin-echo NMR.
    Umecky T; Saito Y; Matsumoto H
    J Phys Chem B; 2009 Jun; 113(25):8466-8. PubMed ID: 19496553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature and pressure dependence of the diffusion coefficients and NMR relaxation times of mixtures of alkanes.
    Freed DE
    J Phys Chem B; 2009 Apr; 113(13):4293-302. PubMed ID: 19256466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new method for measuring the diffusion coefficient in a gas phase.
    Rouholahnejad F; Tabrizchi M
    J Phys Chem A; 2006 Sep; 110(38):11208-13. PubMed ID: 16986857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mobility-induced instability and pattern formation in a reaction-diffusion system.
    Riaz SS; Kar S; Ray DS
    J Chem Phys; 2004 Sep; 121(11):5395-9. PubMed ID: 15352833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular modeling of diffusion coefficient and ionic conductivity of CO2 in aqueous ionic solutions.
    Garcia-Ratés M; de Hemptinne JC; Bonet Avalos J; Nieto-Draghi C
    J Phys Chem B; 2012 Mar; 116(9):2787-800. PubMed ID: 22292779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics simulations of ionic liquids: cation and anion dependence of self-diffusion coefficients of ions.
    Tsuzuki S; Shinoda W; Saito H; Mikami M; Tokuda H; Watanabe M
    J Phys Chem B; 2009 Aug; 113(31):10641-9. PubMed ID: 19591511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diffusion coefficients in ionic liquids: relationship to the viscosity.
    Brookes R; Davies A; Ketwaroo G; Madden PA
    J Phys Chem B; 2005 Apr; 109(14):6485-90. PubMed ID: 16851727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Front motion in an A+B-->C type reaction-diffusion process: effects of an electric field.
    Bena I; Coppex F; Droz M; Rácz Z
    J Chem Phys; 2005 Jan; 122(2):024512. PubMed ID: 15638603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics simulation of imidazolium-based ionic liquids. I. Dynamics and diffusion coefficient.
    Kowsari MH; Alavi S; Ashrafizaadeh M; Najafi B
    J Chem Phys; 2008 Dec; 129(22):224508. PubMed ID: 19071929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polarization of the Electrical Double Layer. Time Evolution after Application of an Electric Field.
    Shilov VN; Delgado AV; González-Caballero F; Horno J; López-García JJ; Grosse C
    J Colloid Interface Sci; 2000 Dec; 232(1):141-148. PubMed ID: 11071743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of complexation with humic substances on diffusion of metal ions in water.
    Furukawa K; Takahashi Y
    Chemosphere; 2008 Nov; 73(8):1272-8. PubMed ID: 18722642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation of transverse and rotational diffusion coefficient: a probe of chemical composition in hydrocarbon oils.
    Mutina AR; Hürlimann MD
    J Phys Chem A; 2008 Apr; 112(15):3291-301. PubMed ID: 18335907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced lithium transference numbers in ionic liquid electrolytes.
    Frömling T; Kunze M; Schönhoff M; Sundermeyer J; Roling B
    J Phys Chem B; 2008 Oct; 112(41):12985-90. PubMed ID: 18800824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dependence on chain length of NMR relaxation times in mixtures of alkanes.
    Freed DE
    J Chem Phys; 2007 May; 126(17):174502. PubMed ID: 17492869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence of the ambipolar diffusion in the impedance spectroscopy of an electrolytic cell.
    Barbero G; Lelidis I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 1):051501. PubMed ID: 18233662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Testing ion-neutral interaction potentials using calculated ion transport coefficients.
    Hogan MJ
    J Chem Phys; 2006 Oct; 125(16):164325. PubMed ID: 17092091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.