BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 18498187)

  • 21. Direct NMR measurement of folding kinetics of a trimeric peptide.
    Liu X; Siegel DL; Fan P; Brodsky B; Baum J
    Biochemistry; 1996 Apr; 35(14):4306-13. PubMed ID: 8605179
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Osteogenesis imperfecta murine: interaction between type I collagen homotrimers.
    Kuznetsova N; McBride DJ; Leikin S
    J Mol Biol; 2001 Jun; 309(3):807-15. PubMed ID: 11397098
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Understanding self-assembled amphiphilic peptide supramolecular structures from primary structure helix propensity.
    Baumann MK; Textor M; Reimhult E
    Langmuir; 2008 Aug; 24(15):7645-7. PubMed ID: 18597507
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evidence that abnormal high bone mineralization in growing children with osteogenesis imperfecta is not associated with specific collagen mutations.
    Roschger P; Fratzl-Zelman N; Misof BM; Glorieux FH; Klaushofer K; Rauch F
    Calcif Tissue Int; 2008 Apr; 82(4):263-70. PubMed ID: 18311573
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The importance of proline residues in the structure, stability and susceptibility to proteolytic degradation of collagens.
    Krane SM
    Amino Acids; 2008 Nov; 35(4):703-10. PubMed ID: 18431533
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recombinant collagen studies link the severe conformational changes induced by osteogenesis imperfecta mutations to the disruption of a set of interchain salt bridges.
    Xu K; Nowak I; Kirchner M; Xu Y
    J Biol Chem; 2008 Dec; 283(49):34337-44. PubMed ID: 18845533
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mutation analysis of COL1A1 and COL1A2 in patients diagnosed with osteogenesis imperfecta type I-IV.
    Pollitt R; McMahon R; Nunn J; Bamford R; Afifi A; Bishop N; Dalton A
    Hum Mutat; 2006 Jul; 27(7):716. PubMed ID: 16786509
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The severity of osteogenesis imperfecta: a comparison to the relative free energy differences of collagen model peptides.
    Lee KH; Kuczera K; Banaszak Holl MM
    Biopolymers; 2011 Mar; 95(3):182-93. PubMed ID: 20945334
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unexpected ultrastructral changes in bone osteiod collagens in osteogenesis imperfecta.
    Sarathchandra P; Pope FM
    Micron; 2005; 36(7-8):696-702. PubMed ID: 16182545
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transformation of the mechanism of triple-helix peptide folding in the absence of a C-terminal nucleation domain and its implications for mutations in collagen disorders.
    Buevich AV; Silva T; Brodsky B; Baum J
    J Biol Chem; 2004 Nov; 279(45):46890-5. PubMed ID: 15299012
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Self-assembled heterotrimeric collagen triple helices directed through electrostatic interactions.
    Gauba V; Hartgerink JD
    J Am Chem Soc; 2007 Mar; 129(9):2683-90. PubMed ID: 17295489
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Self-assembly and mineralization of peptide-amphiphile nanofibers.
    Hartgerink JD; Beniash E; Stupp SI
    Science; 2001 Nov; 294(5547):1684-8. PubMed ID: 11721046
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Collagen Gly missense mutations: Effect of residue identity on collagen structure and integrin binding.
    Qiu Y; Mekkat A; Yu H; Yigit S; Hamaia S; Farndale RW; Kaplan DL; Lin YS; Brodsky B
    J Struct Biol; 2018 Sep; 203(3):255-262. PubMed ID: 29758270
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular dynamics investigations on the effect of D amino acid substitution in a triple-helix structure and the stability of collagen.
    Punitha V; Raman SS; Parthasarathi R; Subramanian V; Rao JR; Nair BU; Ramasami T
    J Phys Chem B; 2009 Jul; 113(26):8983-92. PubMed ID: 19518060
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Template-assembled triple-helical peptide molecules: mimicry of collagen by molecular architecture and integrin-specific cell adhesion.
    Khew ST; Tong YW
    Biochemistry; 2008 Jan; 47(2):585-96. PubMed ID: 18154308
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of osteogenesis imperfecta mutations on free energy of collagen model peptides: a molecular dynamics simulation.
    Lee KH; Kuczera K; Holl MM
    Biophys Chem; 2011 Jul; 156(2-3):146-52. PubMed ID: 21514034
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metal-triggered radial self-assembly of collagen peptide fibers.
    Przybyla DE; Chmielewski J
    J Am Chem Soc; 2008 Sep; 130(38):12610-1. PubMed ID: 18763780
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydroxyapatite surface-induced peptide folding.
    Capriotti LA; Beebe TP; Schneider JP
    J Am Chem Soc; 2007 Apr; 129(16):5281-7. PubMed ID: 17397165
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Artificial collagen gels via self-assembly of de novo designed peptides.
    Yamazaki CM; Asada S; Kitagawa K; Koide T
    Biopolymers; 2008; 90(6):816-23. PubMed ID: 18846567
    [TBL] [Abstract][Full Text] [Related]  

  • 40. NMR conformational and dynamic consequences of a gly to ser substitution in an osteogenesis imperfecta collagen model peptide.
    Li Y; Brodsky B; Baum J
    J Biol Chem; 2009 Jul; 284(31):20660-7. PubMed ID: 19451653
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.