BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

988 related articles for article (PubMed ID: 18498190)

  • 1. Self-assembled pH-responsive hydrogels composed of the RATEA16 peptide.
    Zhao Y; Yokoi H; Tanaka M; Kinoshita T; Tan T
    Biomacromolecules; 2008 Jun; 9(6):1511-8. PubMed ID: 18498190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled self-assembly of amphiphilic oligopeptides into shape-specific nanoarchitectures.
    Koga T; Higuchi M; Kinoshita T; Higashi N
    Chemistry; 2006 Feb; 12(5):1360-7. PubMed ID: 16163755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tetrapeptide-based hydrogels: for encapsulation and slow release of an anticancer drug at physiological pH.
    Naskar J; Palui G; Banerjee A
    J Phys Chem B; 2009 Sep; 113(35):11787-92. PubMed ID: 19708711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Introducing chemical functionality in Fmoc-peptide gels for cell culture.
    Jayawarna V; Richardson SM; Hirst AR; Hodson NW; Saiani A; Gough JE; Ulijn RV
    Acta Biomater; 2009 Mar; 5(3):934-43. PubMed ID: 19249724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural control of self-assembled nanofibers by artificial beta-sheet peptides composed of D- or L-isomer.
    Koga T; Matsuoka M; Higashi N
    J Am Chem Soc; 2005 Dec; 127(50):17596-7. PubMed ID: 16351076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature and pH effects on biophysical and morphological properties of self-assembling peptide RADA16-I.
    Ye Z; Zhang H; Luo H; Wang S; Zhou Q; DU X; Tang C; Chen L; Liu J; Shi YK; Zhang EY; Ellis-Behnke R; Zhao X
    J Pept Sci; 2008 Feb; 14(2):152-62. PubMed ID: 18196533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coassembly of oppositely charged short peptides into well-defined supramolecular hydrogels.
    Xu XD; Chen CS; Lu B; Cheng SX; Zhang XZ; Zhuo RX
    J Phys Chem B; 2010 Feb; 114(7):2365-72. PubMed ID: 20166681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-assembly of multidomain peptides: balancing molecular frustration controls conformation and nanostructure.
    Dong H; Paramonov SE; Aulisa L; Bakota EL; Hartgerink JD
    J Am Chem Soc; 2007 Oct; 129(41):12468-72. PubMed ID: 17894489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A thermoresponsive hydrogel based on telechelic PEG end-capped with hydrophobic dipeptides.
    Hamley IW; Cheng G; Castelletto V
    Macromol Biosci; 2011 Aug; 11(8):1068-78. PubMed ID: 21557478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembly of peptide-amphiphile nanofibers: the roles of hydrogen bonding and amphiphilic packing.
    Paramonov SE; Jun HW; Hartgerink JD
    J Am Chem Soc; 2006 Jun; 128(22):7291-8. PubMed ID: 16734483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-assembly of pH and calcium dual-responsive peptide-amphiphilic hydrogel.
    Zhou XR; Ge R; Luo SZ
    J Pept Sci; 2013 Dec; 19(12):737-44. PubMed ID: 24123618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and characterization of designed BMHP1-derived self-assembling peptides for tissue engineering applications.
    Silva D; Natalello A; Sanii B; Vasita R; Saracino G; Zuckermann RN; Doglia SM; Gelain F
    Nanoscale; 2013 Jan; 5(2):704-18. PubMed ID: 23223865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanofibrous scaffold from self-assembly of beta-sheet peptides containing phenylalanine for controlled release.
    Zhao Y; Tanaka M; Kinoshita T; Higuchi M; Tan T
    J Control Release; 2010 Mar; 142(3):354-60. PubMed ID: 19932721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning the pH responsiveness of beta-hairpin peptide folding, self-assembly, and hydrogel material formation.
    Rajagopal K; Lamm MS; Haines-Butterick LA; Pochan DJ; Schneider JP
    Biomacromolecules; 2009 Sep; 10(9):2619-25. PubMed ID: 19663418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aromatic-aromatic interactions induce the self-assembly of pentapeptidic derivatives in water to form nanofibers and supramolecular hydrogels.
    Ma M; Kuang Y; Gao Y; Zhang Y; Gao P; Xu B
    J Am Chem Soc; 2010 Mar; 132(8):2719-28. PubMed ID: 20131781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and theophylline delivery applications of novel PMAA/MWCNT-COOH nanohybrid hydrogels.
    Zhang CH; Luo YL; Chen YS; Wei QB; Fan LH
    J Biomater Sci Polym Ed; 2009; 20(7-8):1119-35. PubMed ID: 19454173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermally reversible hydrogels via intramolecular folding and consequent self-assembly of a de novo designed peptide.
    Pochan DJ; Schneider JP; Kretsinger J; Ozbas B; Rajagopal K; Haines L
    J Am Chem Soc; 2003 Oct; 125(39):11802-3. PubMed ID: 14505386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature-dependent behavior of a symmetric long-chain bolaamphiphile with phosphocholine headgroups in water: from hydrogel to nanoparticles.
    Köhler K; Förster G; Hauser A; Dobner B; Heiser UF; Ziethe F; Richter W; Steiniger F; Drechsler M; Stettin H; Blume A
    J Am Chem Soc; 2004 Dec; 126(51):16804-13. PubMed ID: 15612719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of peptide and guest charge on the structural, mechanical and release properties of β-sheet forming peptides.
    Roberts D; Rochas C; Saiani A; Miller AF
    Langmuir; 2012 Nov; 28(46):16196-206. PubMed ID: 23088490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Folding, self-assembly, and bulk material properties of a de novo designed three-stranded beta-sheet hydrogel.
    Rughani RV; Salick DA; Lamm MS; Yucel T; Pochan DJ; Schneider JP
    Biomacromolecules; 2009 May; 10(5):1295-304. PubMed ID: 19344123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 50.