These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
993 related articles for article (PubMed ID: 18498190)
1. Self-assembled pH-responsive hydrogels composed of the RATEA16 peptide. Zhao Y; Yokoi H; Tanaka M; Kinoshita T; Tan T Biomacromolecules; 2008 Jun; 9(6):1511-8. PubMed ID: 18498190 [TBL] [Abstract][Full Text] [Related]
2. Controlled self-assembly of amphiphilic oligopeptides into shape-specific nanoarchitectures. Koga T; Higuchi M; Kinoshita T; Higashi N Chemistry; 2006 Feb; 12(5):1360-7. PubMed ID: 16163755 [TBL] [Abstract][Full Text] [Related]
3. Tetrapeptide-based hydrogels: for encapsulation and slow release of an anticancer drug at physiological pH. Naskar J; Palui G; Banerjee A J Phys Chem B; 2009 Sep; 113(35):11787-92. PubMed ID: 19708711 [TBL] [Abstract][Full Text] [Related]
5. Structural control of self-assembled nanofibers by artificial beta-sheet peptides composed of D- or L-isomer. Koga T; Matsuoka M; Higashi N J Am Chem Soc; 2005 Dec; 127(50):17596-7. PubMed ID: 16351076 [TBL] [Abstract][Full Text] [Related]
6. Temperature and pH effects on biophysical and morphological properties of self-assembling peptide RADA16-I. Ye Z; Zhang H; Luo H; Wang S; Zhou Q; DU X; Tang C; Chen L; Liu J; Shi YK; Zhang EY; Ellis-Behnke R; Zhao X J Pept Sci; 2008 Feb; 14(2):152-62. PubMed ID: 18196533 [TBL] [Abstract][Full Text] [Related]
7. Coassembly of oppositely charged short peptides into well-defined supramolecular hydrogels. Xu XD; Chen CS; Lu B; Cheng SX; Zhang XZ; Zhuo RX J Phys Chem B; 2010 Feb; 114(7):2365-72. PubMed ID: 20166681 [TBL] [Abstract][Full Text] [Related]
9. A thermoresponsive hydrogel based on telechelic PEG end-capped with hydrophobic dipeptides. Hamley IW; Cheng G; Castelletto V Macromol Biosci; 2011 Aug; 11(8):1068-78. PubMed ID: 21557478 [TBL] [Abstract][Full Text] [Related]
10. Self-assembly of peptide-amphiphile nanofibers: the roles of hydrogen bonding and amphiphilic packing. Paramonov SE; Jun HW; Hartgerink JD J Am Chem Soc; 2006 Jun; 128(22):7291-8. PubMed ID: 16734483 [TBL] [Abstract][Full Text] [Related]
11. Self-assembly of pH and calcium dual-responsive peptide-amphiphilic hydrogel. Zhou XR; Ge R; Luo SZ J Pept Sci; 2013 Dec; 19(12):737-44. PubMed ID: 24123618 [TBL] [Abstract][Full Text] [Related]
12. Synthesis and characterization of designed BMHP1-derived self-assembling peptides for tissue engineering applications. Silva D; Natalello A; Sanii B; Vasita R; Saracino G; Zuckermann RN; Doglia SM; Gelain F Nanoscale; 2013 Jan; 5(2):704-18. PubMed ID: 23223865 [TBL] [Abstract][Full Text] [Related]
13. Nanofibrous scaffold from self-assembly of beta-sheet peptides containing phenylalanine for controlled release. Zhao Y; Tanaka M; Kinoshita T; Higuchi M; Tan T J Control Release; 2010 Mar; 142(3):354-60. PubMed ID: 19932721 [TBL] [Abstract][Full Text] [Related]
14. Tuning the pH responsiveness of beta-hairpin peptide folding, self-assembly, and hydrogel material formation. Rajagopal K; Lamm MS; Haines-Butterick LA; Pochan DJ; Schneider JP Biomacromolecules; 2009 Sep; 10(9):2619-25. PubMed ID: 19663418 [TBL] [Abstract][Full Text] [Related]
15. Aromatic-aromatic interactions induce the self-assembly of pentapeptidic derivatives in water to form nanofibers and supramolecular hydrogels. Ma M; Kuang Y; Gao Y; Zhang Y; Gao P; Xu B J Am Chem Soc; 2010 Mar; 132(8):2719-28. PubMed ID: 20131781 [TBL] [Abstract][Full Text] [Related]
16. Preparation and theophylline delivery applications of novel PMAA/MWCNT-COOH nanohybrid hydrogels. Zhang CH; Luo YL; Chen YS; Wei QB; Fan LH J Biomater Sci Polym Ed; 2009; 20(7-8):1119-35. PubMed ID: 19454173 [TBL] [Abstract][Full Text] [Related]
17. Thermally reversible hydrogels via intramolecular folding and consequent self-assembly of a de novo designed peptide. Pochan DJ; Schneider JP; Kretsinger J; Ozbas B; Rajagopal K; Haines L J Am Chem Soc; 2003 Oct; 125(39):11802-3. PubMed ID: 14505386 [TBL] [Abstract][Full Text] [Related]
18. Temperature-dependent behavior of a symmetric long-chain bolaamphiphile with phosphocholine headgroups in water: from hydrogel to nanoparticles. Köhler K; Förster G; Hauser A; Dobner B; Heiser UF; Ziethe F; Richter W; Steiniger F; Drechsler M; Stettin H; Blume A J Am Chem Soc; 2004 Dec; 126(51):16804-13. PubMed ID: 15612719 [TBL] [Abstract][Full Text] [Related]
19. Effect of peptide and guest charge on the structural, mechanical and release properties of β-sheet forming peptides. Roberts D; Rochas C; Saiani A; Miller AF Langmuir; 2012 Nov; 28(46):16196-206. PubMed ID: 23088490 [TBL] [Abstract][Full Text] [Related]
20. Folding, self-assembly, and bulk material properties of a de novo designed three-stranded beta-sheet hydrogel. Rughani RV; Salick DA; Lamm MS; Yucel T; Pochan DJ; Schneider JP Biomacromolecules; 2009 May; 10(5):1295-304. PubMed ID: 19344123 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]