BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 18498364)

  • 21. The virulence factor PEB4 (Cj0596) and the periplasmic protein Cj1289 are two structurally related SurA-like chaperones in the human pathogen Campylobacter jejuni.
    Kale A; Phansopa C; Suwannachart C; Craven CJ; Rafferty JB; Kelly DJ
    J Biol Chem; 2011 Jun; 286(24):21254-65. PubMed ID: 21524997
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The activity and specificity of the outer membrane protein chaperone SurA are modulated by a proline isomerase domain.
    Ricci DP; Schwalm J; Gonzales-Cope M; Silhavy TJ
    mBio; 2013 Aug; 4(4):. PubMed ID: 23943764
    [TBL] [Abstract][Full Text] [Related]  

  • 23. NMR solution structure of hPar14 reveals similarity to the peptidyl prolyl cis/trans isomerase domain of the mitotic regulator hPin1 but indicates a different functionality of the protein.
    Sekerina E; Rahfeld JU; Müller J; Fanghänel J; Rascher C; Fischer G; Bayer P
    J Mol Biol; 2000 Aug; 301(4):1003-17. PubMed ID: 10966801
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Combination of the human prolyl isomerase FKBP12 with unrelated chaperone domains leads to chimeric folding enzymes with high activity.
    Geitner AJ; Schmid FX
    J Mol Biol; 2012 Jul; 420(4-5):335-49. PubMed ID: 22542528
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Escherichia coli SlyD is a metal ion-regulated peptidyl-prolyl cis/trans-isomerase.
    Hottenrott S; Schumann T; Plückthun A; Fischer G; Rahfeld JU
    J Biol Chem; 1997 Jun; 272(25):15697-701. PubMed ID: 9188461
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ssp1, a site-specific parvulin homolog from Neurospora crassa active in protein folding.
    Kops O; Eckerskorn C; Hottenrott S; Fischer G; Mi H; Tropschug M
    J Biol Chem; 1998 Nov; 273(48):31971-6. PubMed ID: 9822668
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crystallographic structure of SurA, a molecular chaperone that facilitates folding of outer membrane porins.
    Bitto E; McKay DB
    Structure; 2002 Nov; 10(11):1489-98. PubMed ID: 12429090
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Solution structure of the single-domain prolyl cis/trans isomerase PIN1At from Arabidopsis thaliana.
    Landrieu I; Wieruszeski JM; Wintjens R; Inzé D; Lippens G
    J Mol Biol; 2002 Jul; 320(2):321-32. PubMed ID: 12079389
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Confirmation of the existence of a third family among peptidyl-prolyl cis/trans isomerases. Amino acid sequence and recombinant production of parvulin.
    Rahfeld JU; Rücknagel KP; Schelbert B; Ludwig B; Hacker J; Mann K; Fischer G
    FEBS Lett; 1994 Sep; 352(2):180-4. PubMed ID: 7925971
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of SurA factor in outer membrane protein transport and virulence.
    Behrens-Kneip S
    Int J Med Microbiol; 2010 Nov; 300(7):421-8. PubMed ID: 20447864
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computational perspective and evaluation of plausible catalytic mechanisms of peptidyl-prolyl cis-trans isomerases.
    Ladani ST; Souffrant MG; Barman A; Hamelberg D
    Biochim Biophys Acta; 2015 Oct; 1850(10):1994-2004. PubMed ID: 25585011
    [TBL] [Abstract][Full Text] [Related]  

  • 32. NMR assignments of the peptidyl-prolyl cis-trans isomerase domain of trigger factor from E. coli.
    Huang CT; Hsu ST
    Biomol NMR Assign; 2016 Apr; 10(1):149-52. PubMed ID: 26527152
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional conservation of phosphorylation-specific prolyl isomerases in plants.
    Yao JL; Kops O; Lu PJ; Lu KP
    J Biol Chem; 2001 Apr; 276(17):13517-23. PubMed ID: 11118438
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A ribosome-associated peptidyl-prolyl cis/trans isomerase identified as the trigger factor.
    Stoller G; Rücknagel KP; Nierhaus KH; Schmid FX; Fischer G; Rahfeld JU
    EMBO J; 1995 Oct; 14(20):4939-48. PubMed ID: 7588623
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Peptidyl-prolyl cis-trans isomerase of Bacillus subtilis: identification of residues involved in cyclosporin A affinity and catalytic efficiency.
    Göthel SF; Herrler M; Marahiel MA
    Biochemistry; 1996 Mar; 35(11):3636-40. PubMed ID: 8639516
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conformational Dynamics of the Periplasmic Chaperone SurA.
    Jia M; Wu B; Yang Z; Chen C; Zhao M; Hou X; Niu X; Jin C; Hu Y
    Biochemistry; 2020 Sep; 59(35):3235-3246. PubMed ID: 32786408
    [TBL] [Abstract][Full Text] [Related]  

  • 37.
    Jia M; Hu Y; Jin C
    Biomol NMR Assign; 2019 Apr; 13(1):183-186. PubMed ID: 30684235
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Diverse sequences are functional at the C-terminus of the E. coli periplasmic chaperone SurA.
    Chai Q; Ferrell B; Zhong M; Zhang X; Ye C; Wei Y
    Protein Eng Des Sel; 2014 Apr; 27(4):111-6. PubMed ID: 24586054
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impact of distant peptide substrate residues on enzymatic activity of SlyD.
    Pazicky S; Werle AA; Lei J; Löw C; Weininger U
    Cell Mol Life Sci; 2022 Feb; 79(3):138. PubMed ID: 35184231
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of Substrates of Cytoplasmic Peptidyl-Prolyl
    Klein G; Wojtkiewicz P; Biernacka D; Stupak A; Gorzelak P; Raina S
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32545723
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.