These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 18498648)
1. Lysine methylation of HIV-1 Tat regulates transcriptional activity of the viral LTR. Van Duyne R; Easley R; Wu W; Berro R; Pedati C; Klase Z; Kehn-Hall K; Flynn EK; Symer DE; Kashanchi F Retrovirology; 2008 May; 5():40. PubMed ID: 18498648 [TBL] [Abstract][Full Text] [Related]
2. The HIV-1 Tat Protein Is Monomethylated at Lysine 71 by the Lysine Methyltransferase KMT7. Ali I; Ramage H; Boehm D; Dirk LM; Sakane N; Hanada K; Pagans S; Kaehlcke K; Aull K; Weinberger L; Trievel R; Schnoelzer M; Kamada M; Houtz R; Ott M J Biol Chem; 2016 Jul; 291(31):16240-8. PubMed ID: 27235396 [TBL] [Abstract][Full Text] [Related]
3. The Cellular lysine methyltransferase Set7/9-KMT7 binds HIV-1 TAR RNA, monomethylates the viral transactivator Tat, and enhances HIV transcription. Pagans S; Kauder SE; Kaehlcke K; Sakane N; Schroeder S; Dormeyer W; Trievel RC; Verdin E; Schnolzer M; Ott M Cell Host Microbe; 2010 Mar; 7(3):234-44. PubMed ID: 20227666 [TBL] [Abstract][Full Text] [Related]
5. Effect of SWI/SNF chromatin remodeling complex on HIV-1 Tat activated transcription. Agbottah E; Deng L; Dannenberg LO; Pumfery A; Kashanchi F Retrovirology; 2006 Aug; 3():48. PubMed ID: 16893449 [TBL] [Abstract][Full Text] [Related]
6. Cellular RelB interacts with the transactivator Tat and enhance HIV-1 expression. Wang M; Yang W; Chen Y; Wang J; Tan J; Qiao W Retrovirology; 2018 Sep; 15(1):65. PubMed ID: 30241541 [TBL] [Abstract][Full Text] [Related]
7. NUCKS1, a novel Tat coactivator, plays a crucial role in HIV-1 replication by increasing Tat-mediated viral transcription on the HIV-1 LTR promoter. Kim HY; Choi BS; Kim SS; Roh TY; Park J; Yoon CH Retrovirology; 2014 Aug; 11():67. PubMed ID: 25116364 [TBL] [Abstract][Full Text] [Related]
8. UTX-1 regulates Tat-induced HIV-1 transactivation via changing the methylated status of histone H3. Zhang HS; Du GY; Liu Y; Zhang ZG; Zhou Z; Li H; Dai KQ; Yu XY; Gou XM Int J Biochem Cell Biol; 2016 Nov; 80():51-56. PubMed ID: 27671333 [TBL] [Abstract][Full Text] [Related]
9. HIV latency reversing agents act through Tat post translational modifications. Khoury G; Mota TM; Li S; Tumpach C; Lee MY; Jacobson J; Harty L; Anderson JL; Lewin SR; Purcell DFJ Retrovirology; 2018 May; 15(1):36. PubMed ID: 29751762 [TBL] [Abstract][Full Text] [Related]
10. The effect of N-acetylation and N-methylation of lysine residue of Tat peptide on its interaction with HIV-1 TAR RNA. Kumar S; Maiti S PLoS One; 2013; 8(10):e77595. PubMed ID: 24147034 [TBL] [Abstract][Full Text] [Related]
11. Effects of the tat and nef gene products of human immunodeficiency virus type 1 (HIV-1) on transcription controlled by the HIV-1 long terminal repeat and on cell growth in macrophages. Murphy KM; Sweet MJ; Ross IL; Hume DA J Virol; 1993 Dec; 67(12):6956-64. PubMed ID: 8230418 [TBL] [Abstract][Full Text] [Related]
12. Lysine-specific demethylase 1 cooperates with BRAF-histone deacetylase complex 80 to enhance HIV-1 Tat-mediated transactivation. Liu Y; Zhou D; Qi D; Feng J; Liu Z; Hu Y; Shen W; Liu C; Kong X Virus Genes; 2018 Oct; 54(5):662-671. PubMed ID: 30105631 [TBL] [Abstract][Full Text] [Related]
13. An emerging and variant viral promoter of HIV-1 subtype C exhibits low-level gene expression noise. Ali H; Bhange D; Mehta K; Gohil Y; Prajapati HK; Byrareddy SN; Buch S; Ranga U Retrovirology; 2021 Sep; 18(1):27. PubMed ID: 34538278 [TBL] [Abstract][Full Text] [Related]
14. Drastic decrease of transcription activity due to hypermutated long terminal repeat (LTR) region in different HIV-1 subtypes and recombinants. de Arellano ER; Alcamí J; López M; Soriano V; Holguín A Antiviral Res; 2010 Nov; 88(2):152-9. PubMed ID: 20713090 [TBL] [Abstract][Full Text] [Related]
15. Short communication: a single step assay for rapid evaluation of inhibitors targeting HIV type 1 Tat-mediated long terminal repeat transactivation. Chande AG; Baba M; Mukhopadhyaya R AIDS Res Hum Retroviruses; 2012 Aug; 28(8):902-6. PubMed ID: 21878060 [TBL] [Abstract][Full Text] [Related]
16. Genetic variation of the HIV-1 subtype C transmitted/founder viruses long terminal repeat elements and the impact on transcription activation potential and clinical disease outcomes. Madlala P; Mkhize Z; Naicker S; Khathi SP; Maikoo S; Gopee K; Dong KL; Ndung'u T PLoS Pathog; 2023 Jun; 19(6):e1011194. PubMed ID: 37307292 [TBL] [Abstract][Full Text] [Related]
17. Transdominant mutants of I kappa B alpha block Tat-tumor necrosis factor synergistic activation of human immunodeficiency virus type 1 gene expression and virus multiplication. Beauparlant P; Kwon H; Clarke M; Lin R; Sonenberg N; Wainberg M; Hiscott J J Virol; 1996 Sep; 70(9):5777-85. PubMed ID: 8709193 [TBL] [Abstract][Full Text] [Related]
18. Optimal Tat-mediated activation of the HIV-1 LTR promoter requires a full-length TAR RNA hairpin. Verhoef K; Tijms M; Berkhout B Nucleic Acids Res; 1997 Feb; 25(3):496-502. PubMed ID: 9016587 [TBL] [Abstract][Full Text] [Related]
19. Distinct transcriptional pathways of TAR-dependent and TAR-independent human immunodeficiency virus type-1 transactivation by Tat. Yang L; Morris GF; Lockyer JM; Lu M; Wang Z; Morris CB Virology; 1997 Aug; 235(1):48-64. PubMed ID: 9300036 [TBL] [Abstract][Full Text] [Related]
20. Inhibition of both HIV-1 reverse transcription and gene expression by a cyclic peptide that binds the Tat-transactivating response element (TAR) RNA. Lalonde MS; Lobritz MA; Ratcliff A; Chamanian M; Athanassiou Z; Tyagi M; Wong J; Robinson JA; Karn J; Varani G; Arts EJ PLoS Pathog; 2011 May; 7(5):e1002038. PubMed ID: 21625572 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]