These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 18498688)
1. Analysis of protein-based media commonly found in paintings using synchronous fluorescence spectroscopy combined with multivariate statistical analysis. Nevin A; Cather S; Burnstock A; Anglos D Appl Spectrosc; 2008 May; 62(5):481-9. PubMed ID: 18498688 [TBL] [Abstract][Full Text] [Related]
2. Raman spectra of proteinaceous materials used in paintings: a multivariate analytical approach for classification and identification. Nevin A; Osticioli I; Anglos D; Burnstock A; Cather S; Castellucci E Anal Chem; 2007 Aug; 79(16):6143-51. PubMed ID: 17620009 [TBL] [Abstract][Full Text] [Related]
3. Analysis of protein-based binding media found in paintings using laser induced fluorescence spectroscopy. Nevin A; Cather S; Anglos D; Fotakis C Anal Chim Acta; 2006 Jul; 573-574():341-6. PubMed ID: 17723543 [TBL] [Abstract][Full Text] [Related]
4. Total synchronous fluorescence spectroscopy combined with multivariate analysis: method for the classification of selected resins, oils, and protein-based media used in paintings. Nevin A; Comelli D; Valentini G; Cubeddu R Anal Chem; 2009 Mar; 81(5):1784-91. PubMed ID: 19193037 [TBL] [Abstract][Full Text] [Related]
5. Excitation emission and time-resolved fluorescence spectroscopy of selected varnishes used in historical musical instruments. Nevin A; Echard JP; Thoury M; Comelli D; Valentini G; Cubeddu R Talanta; 2009 Nov; 80(1):286-93. PubMed ID: 19782228 [TBL] [Abstract][Full Text] [Related]
6. Time-resolved fluorescence spectroscopy and imaging of proteinaceous binders used in paintings. Nevin A; Comelli D; Valentini G; Anglos D; Burnstock A; Cather S; Cubeddu R Anal Bioanal Chem; 2007 Aug; 388(8):1897-905. PubMed ID: 17604983 [TBL] [Abstract][Full Text] [Related]
7. Effects of mild heating and acidification on the molecular structure of milk components as investigated by synchronous front-face fluorescence spectroscopy coupled with parallel factor analysis. Boubellouta T; Dufour E Appl Spectrosc; 2008 May; 62(5):490-6. PubMed ID: 18498689 [TBL] [Abstract][Full Text] [Related]
8. Simultaneous analysis of riboflavin and aromatic amino acids in beer using fluorescence and multivariate calibration methods. Sikorska E; Gliszczyńska-Swigło A; Insińska-Rak M; Khmelinskii I; De Keukeleire D; Sikorski M Anal Chim Acta; 2008 Apr; 613(2):207-17. PubMed ID: 18395060 [TBL] [Abstract][Full Text] [Related]
9. Fluorescence spectroscopy for rapid detection and classification of bacterial pathogens. Sohn M; Himmelsbach DS; Barton FE; Fedorka-Cray PJ Appl Spectrosc; 2009 Nov; 63(11):1251-5. PubMed ID: 19891833 [TBL] [Abstract][Full Text] [Related]
10. Front face fluorescence spectroscopy as a tool for the assessment of egg freshness during storage at a temperature of 12.2 degrees C and 87% relative humidity. Karoui R; Schoonheydt R; Decuypere E; Nicolaï B; De Baerdemaeker J Anal Chim Acta; 2007 Jan; 582(1):83-91. PubMed ID: 17386478 [TBL] [Abstract][Full Text] [Related]
11. Front-face fluorescence spectroscopy as a rapid and nondestructive tool for differentiating various cereal products: a preliminary investigation. Karoui R; Cartaud G; Dufour E J Agric Food Chem; 2006 Mar; 54(6):2027-34. PubMed ID: 16536571 [TBL] [Abstract][Full Text] [Related]
12. Effects of added minerals (calcium, phosphate, and citrate) on the molecular structure of skim milk as investigated by mid-infrared and synchronous fluorescence spectroscopies coupled with chemometrics. Boubellouta T; Galtier V; Dufour E Appl Spectrosc; 2009 Oct; 63(10):1134-41. PubMed ID: 19843364 [TBL] [Abstract][Full Text] [Related]
13. Synchronous front-face fluorescence spectroscopy coupled with parallel factors (PARAFAC) analysis to study the effects of cooking time on meat. Sahar A; Boubellouta T; Portanguen S; Kondjoyan A; Dufour E J Food Sci; 2009; 74(9):E534-9. PubMed ID: 20492116 [TBL] [Abstract][Full Text] [Related]
14. Curie-point pyrolysis-gas chromatography/mass spectrometry in the art field. 2--The characterization of proteinaceous binders. Carbini M; Stevanato R; Rovea M; Traldi P; Favretto D Rapid Commun Mass Spectrom; 1996; 10(10):1240-2. PubMed ID: 8759333 [TBL] [Abstract][Full Text] [Related]
15. Comparison between traditional strategies and classification technique (SIMCA) in the identification of old proteinaceous binders. Checa-Moreno R; Manzano E; Mirón G; Capitan-Vallvey LF Talanta; 2008 May; 75(3):697-704. PubMed ID: 18585134 [TBL] [Abstract][Full Text] [Related]
16. Detection of the presence of refined hazelnut oil in refined olive oil by fluorescence spectroscopy. Sayago A; García-Gonzalez DL; Morales MT; Aparicio R J Agric Food Chem; 2007 Mar; 55(6):2068-71. PubMed ID: 17319679 [TBL] [Abstract][Full Text] [Related]
17. Identification of proteins in renaissance paintings by proteomics. Tokarski C; Martin E; Rolando C; Cren-Olivé C Anal Chem; 2006 Mar; 78(5):1494-502. PubMed ID: 16503599 [TBL] [Abstract][Full Text] [Related]
18. Compact detector for proteins based on two-photon excitation of native fluorescence. Paul UP; Li L; Lee ML; Farnsworth PB Anal Chem; 2005 Jun; 77(11):3690-3. PubMed ID: 15924406 [TBL] [Abstract][Full Text] [Related]
19. Front-face fluorescence spectroscopy allows the characterization of mild heat treatments applied to milk. Relations with the denaturation of milk proteins. Kulmyrzaev AA; Levieux D; Dufour E J Agric Food Chem; 2005 Feb; 53(3):502-7. PubMed ID: 15686393 [TBL] [Abstract][Full Text] [Related]
20. Authentication of the botanical origin of honey by front-face fluorescence spectroscopy. A preliminary study. Ruoff K; Karoui R; Dufour E; Luginbühl W; Bosset JO; Bogdanov S; Amado R J Agric Food Chem; 2005 Mar; 53(5):1343-7. PubMed ID: 15740004 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]