BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 1849889)

  • 1. Evidence that the asparagine 322 mutant of the lactose permease transports protons and lactose with a normal stoichiometry and accumulates lactose against a concentration gradient.
    Franco PJ; Brooker RJ
    J Biol Chem; 1991 Apr; 266(11):6693-9. PubMed ID: 1849889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the double mutant, Val-177/Asn-322, of the lactose permease.
    Brooker RJ
    J Biol Chem; 1990 Mar; 265(7):4155-60. PubMed ID: 2406272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An analysis of lactose permease "sugar specificity" mutations which also affect the coupling between proton and lactose transport. II. Second site revertants of the thiodigalactoside-dependent proton leak by the Val177/Asn319 permease.
    Eelkema JA; O'Donnell MA; Brooker RJ
    J Biol Chem; 1991 Mar; 266(7):4139-44. PubMed ID: 1999408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation and characterization of lactose permease mutants with an enhanced recognition of maltose and diminished recognition of cellobiose.
    Collins JC; Permuth SF; Brooker RJ
    J Biol Chem; 1989 Sep; 264(25):14698-703. PubMed ID: 2670925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A K319N/E325Q double mutant of the lactose permease cotransports H+ with lactose. Implications for a proposed mechanism of H+/lactose symport.
    Johnson JL; Brooker RJ
    J Biol Chem; 1999 Feb; 274(7):4074-81. PubMed ID: 9933600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and characterization of thiodigalactoside-resistant mutants of the lactose permease which possess an enhanced recognition for maltose.
    Franco PJ; Eelkema JA; Brooker RJ
    J Biol Chem; 1989 Sep; 264(27):15988-92. PubMed ID: 2674122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An analysis of lactose permease "sugar specificity" mutations which also affect the coupling between proton and lactose transport. I. Val177 and Val177/Asn319 permeases facilitate proton uniport and sugar uniport.
    Brooker RJ
    J Biol Chem; 1991 Mar; 266(7):4131-8. PubMed ID: 1999407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An analysis of the side chain requirement at position 177 within the lactose permease which confers the ability to recognize maltose.
    Gram CD; Brooker RJ
    J Biol Chem; 1992 Feb; 267(6):3841-6. PubMed ID: 1740432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional roles of Glu-269 and Glu-325 within the lactose permease of Escherichia coli.
    Franco PJ; Brooker RJ
    J Biol Chem; 1994 Mar; 269(10):7379-86. PubMed ID: 7907327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization and sequencing of the lac Y54-41 "uncoupled" mutant of the lactose permease.
    Brooker RJ; Myster SH; Wilson TH
    J Biol Chem; 1989 May; 264(14):8135-40. PubMed ID: 2542266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A triple mutant, K319N/H322Q/E325Q, of the lactose permease cotransports H+ with thiodigalactoside.
    Johnson JL; Lockheart MS; Brooker RJ
    J Membr Biol; 2001 Jun; 181(3):215-24. PubMed ID: 11420608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional role of arginine 302 within the lactose permease of Escherichia coli.
    Matzke EA; Stephenson LJ; Brooker RJ
    J Biol Chem; 1992 Sep; 267(27):19095-100. PubMed ID: 1527034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-directed mutagenesis of cysteine-148 in the lac permease of Escherichia coli: effect on transport, binding, and sulfhydryl inactivation.
    Viitanen PV; Menick DR; Sarkar HK; Trumble WR; Kaback HR
    Biochemistry; 1985 Dec; 24(26):7628-35. PubMed ID: 3912006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of lactose carrier mutants which transport maltose.
    Brooker RJ; Fiebig K; Wilson TH
    J Biol Chem; 1985 Dec; 260(30):16181-6. PubMed ID: 3905809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lactose transport system of Streptococcus thermophilus. The role of histidine residues.
    Poolman B; Modderman R; Reizer J
    J Biol Chem; 1992 May; 267(13):9150-7. PubMed ID: 1577752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cooperative binding of the sugar substrates and allosteric regulatory protein (enzyme IIIGlc of the phosphotransferase system) to the lactose and melibiose permeases in Escherichia coli and Salmonella typhimurium.
    Saier MH; Novotny MJ; Comeau-Fuhrman D; Osumi T; Desai JD
    J Bacteriol; 1983 Sep; 155(3):1351-7. PubMed ID: 6350268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cysteine scanning mutagenesis of putative transmembrane helices IX and X in the lactose permease of Escherichia coli.
    Sahin-Tóth M; Kaback HR
    Protein Sci; 1993 Jun; 2(6):1024-33. PubMed ID: 8318887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Escherichia coli lactose carrier mutants that transport protons without a cosubstrate. Probes for the energy barrier to uncoupled transport.
    King SC; Wilson TH
    J Biol Chem; 1990 Jun; 265(17):9645-51. PubMed ID: 2161839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of protons in the mechanism of galactoside transport via the lactose permease of Escherichia coli.
    Page MG
    Biochim Biophys Acta; 1987 Feb; 897(1):112-26. PubMed ID: 3026476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of site-directed mutants in the lac permease of Escherichia coli. 1. Replacement of histidine residues.
    Püttner IB; Sarkar HK; Padan E; Lolkema JS; Kaback HR
    Biochemistry; 1989 Mar; 28(6):2525-33. PubMed ID: 2659072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.