These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 1849901)
21. Site-directed removal of N-glycosylation sites in the bovine cation-dependent mannose 6-phosphate receptor: effects on ligand binding, intracellular targetting and association with binding immunoglobulin protein. Zhang Y; Dahms NM Biochem J; 1993 Nov; 295 ( Pt 3)(Pt 3):841-8. PubMed ID: 8240300 [TBL] [Abstract][Full Text] [Related]
22. Structural insights into the amino-terminus of the secretin receptor: I. Status of cysteine and cystine residues. Asmann YW; Dong M; Ganguli S; Hadac EM; Miller LJ Mol Pharmacol; 2000 Nov; 58(5):911-9. PubMed ID: 11040037 [TBL] [Abstract][Full Text] [Related]
23. Disulfide bonding arrangements in active forms of the somatomedin B domain of human vitronectin. Kamikubo Y; De Guzman R; Kroon G; Curriden S; Neels JG; Churchill MJ; Dawson P; Ołdziej S; Jagielska A; Scheraga HA; Loskutoff DJ; Dyson HJ Biochemistry; 2004 Jun; 43(21):6519-34. PubMed ID: 15157085 [TBL] [Abstract][Full Text] [Related]
24. Mutations of either or both Cys876 and Cys888 residues of sarcoplasmic reticulum Ca2+-ATPase result in a complete loss of Ca2+ transport activity without a loss of Ca2+-dependent ATPase activity. Role of the CYS876-CYS888 disulfide bond. Daiho T; Yamasaki K; Saino T; Kamidochi M; Satoh K; Iizuka H; Suzuki H J Biol Chem; 2001 Aug; 276(35):32771-8. PubMed ID: 11438520 [TBL] [Abstract][Full Text] [Related]
25. Identification of persulfide-binding and disulfide-forming cysteine residues in the NifS-like domain of the molybdenum cofactor sulfurase ABA3 by cysteine-scanning mutagenesis. Lehrke M; Rump S; Heidenreich T; Wissing J; Mendel RR; Bittner F Biochem J; 2012 Feb; 441(3):823-32. PubMed ID: 22004669 [TBL] [Abstract][Full Text] [Related]
26. The Venus's-flytrap and cysteine-rich domains of the human Ca2+ receptor are not linked by disulfide bonds. Hu J; Reyes-Cruz G; Goldsmith PK; Spiegel AM J Biol Chem; 2001 Mar; 276(10):6901-4. PubMed ID: 11238442 [TBL] [Abstract][Full Text] [Related]
27. Site-directed mutagenesis of cysteinyl and serine residues of human thromboxane A2 receptor in insect cells. Chiang N; Kan WM; Tai HH Arch Biochem Biophys; 1996 Oct; 334(1):9-17. PubMed ID: 8837733 [TBL] [Abstract][Full Text] [Related]
28. Structure-function relationships for the IL-2 receptor system. V. Structure-activity analysis of modified and truncated forms of the Tac receptor protein: site-specific mutagenesis of cysteine residues. Rusk CM; Neeper MP; Kuo LM; Kutny RM; Robb RJ J Immunol; 1988 Apr; 140(7):2249-59. PubMed ID: 2832473 [TBL] [Abstract][Full Text] [Related]
29. Molecular cloning of the mouse 46-kDa mannose 6-phosphate receptor (MPR 46). Köster A; Nagel G; von Figura K; Pohlmann R Biol Chem Hoppe Seyler; 1991 Apr; 372(4):297-300. PubMed ID: 1647783 [TBL] [Abstract][Full Text] [Related]
30. Identification of human vesicle monoamine transporter (VMAT2) lumenal cysteines that form an intramolecular disulfide bond. Thiriot DS; Sievert MK; Ruoho AE Biochemistry; 2002 May; 41(20):6346-53. PubMed ID: 12009896 [TBL] [Abstract][Full Text] [Related]
31. Disulfide bridges in extracellular domains of angiotensin II receptor type IA. Ohyama K; Yamano Y; Sano T; Nakagomi Y; Hamakubo T; Morishima I; Inagami T Regul Pept; 1995 May; 57(2):141-7. PubMed ID: 7659790 [TBL] [Abstract][Full Text] [Related]
32. Nitric oxide modification of rat brain neurogranin. Identification of the cysteine residues involved in intramolecular disulfide bridge formation using site-directed mutagenesis. Mahoney CW; Pak JH; Huang KP J Biol Chem; 1996 Nov; 271(46):28798-804. PubMed ID: 8910523 [TBL] [Abstract][Full Text] [Related]
33. The molecular mechanism of sulfated carbohydrate recognition by the cysteine-rich domain of mannose receptor. Liu Y; Misulovin Z; Bjorkman PJ J Mol Biol; 2001 Jan; 305(3):481-90. PubMed ID: 11152606 [TBL] [Abstract][Full Text] [Related]
34. Reversible inactivation of AT(2) angiotensin II receptor from cysteine-disulfide bond exchange. Feng YH; Saad Y; Karnik SS FEBS Lett; 2000 Nov; 484(2):133-8. PubMed ID: 11068047 [TBL] [Abstract][Full Text] [Related]
35. The role of disulfide bonds in the assembly and function of MD-2. Mullen GE; Kennedy MN; Visintin A; Mazzoni A; Leifer CA; Davies DR; Segal DM Proc Natl Acad Sci U S A; 2003 Apr; 100(7):3919-24. PubMed ID: 12642668 [TBL] [Abstract][Full Text] [Related]
36. Role of individual cysteine residues and disulfide bonds in the structure and function of Aspergillus ribonucleolytic toxin restrictocin. Nayak SK; Rathore D; Batra JK Biochemistry; 1999 Aug; 38(31):10052-8. PubMed ID: 10433712 [TBL] [Abstract][Full Text] [Related]
37. Roles of disulfide bonds in bacterial alkaline phosphatase. Sone M; Kishigami S; Yoshihisa T; Ito K J Biol Chem; 1997 Mar; 272(10):6174-8. PubMed ID: 9045630 [TBL] [Abstract][Full Text] [Related]
38. Alignment of disulfide bonds of the extracellular domain of the interferon gamma receptor and investigation of their role in biological activity. Stüber D; Friedlein A; Fountoulakis M; Lahm HW; Garotta G Biochemistry; 1993 Mar; 32(9):2423-30. PubMed ID: 8443182 [TBL] [Abstract][Full Text] [Related]
39. Ligand-binding characteristics and related structural features of the expressed goldfish kainate receptors: identification of a conserved disulfide bond and three residues important for ligand binding. Wo ZG; Oswald RE Mol Pharmacol; 1996 Oct; 50(4):770-80. PubMed ID: 8863821 [TBL] [Abstract][Full Text] [Related]
40. Replacement of the active-site cysteine residues of DsbA, a protein required for disulfide bond formation in vivo. Zapun A; Cooper L; Creighton TE Biochemistry; 1994 Feb; 33(7):1907-14. PubMed ID: 8110795 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]