BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 1849909)

  • 1. EEG suppression and anoxic depolarization: influences on cerebral oxygenation during ischemia.
    Raffin CN; Harrison M; Sick TJ; Rosenthal M
    J Cereb Blood Flow Metab; 1991 May; 11(3):407-15. PubMed ID: 1849909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potassium ion homeostasis and mitochondrial redox activity in brain: relative changes as indicators of hypoxia.
    Milito SJ; Raffin CN; Rosenthal M; Sick TJ
    J Cereb Blood Flow Metab; 1988 Apr; 8(2):155-62. PubMed ID: 3343290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial hyperoxidation signals residual intracellular dysfunction after global ischemia in rat neocortex.
    Rosenthal M; Feng ZC; Raffin CN; Harrison M; Sick TJ
    J Cereb Blood Flow Metab; 1995 Jul; 15(4):655-65. PubMed ID: 7790415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of glycolysis alters potassium ion transport and mitochondrial redox activity in rat brain.
    Raffin CN; Sick TJ; Rosenthal M
    J Cereb Blood Flow Metab; 1988 Dec; 8(6):857-65. PubMed ID: 2848047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disparate recovery of resting and stimulated oxidative metabolism following transient ischemia.
    Duckrow RB; LaManna JS; Rosenthal M
    Stroke; 1981; 12(5):677-86. PubMed ID: 6272454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy-dependent redox state of heme a + a3 and copper of cytochrome oxidase in perfused rat brain in situ.
    Matsunaga A; Nomura Y; Kuroda S; Tamura M; Nishihira J; Yoshimura N
    Am J Physiol; 1998 Oct; 275(4):C1022-30. PubMed ID: 9755055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxygen sensitivity of mitochondrial redox status and evoked potential recovery early during reperfusion in post-ischemic rat brain.
    Feng ZC; Sick TJ; Rosenthal M
    Resuscitation; 1998 Apr; 37(1):33-41. PubMed ID: 9667336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative study of EEG suppressions induced by global cerebral ischemia and anoxia.
    Zagrean L; Vatasescu R; Oprica M; Nutiu O; Ferechide D
    Rom J Physiol; 1995; 32(1-4):39-44. PubMed ID: 8896074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain potassium ion homeostasis, anoxia, and metabolic inhibition in turtles and rats.
    Sick TJ; Rosenthal M; LaManna JC; Lutz PL
    Am J Physiol; 1982 Sep; 243(3):R281-8. PubMed ID: 6287869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Near-infrared monitoring of cerebral oxygenation during cerebral ischemia].
    Kuroda S
    Hokkaido Igaku Zasshi; 1995 May; 70(3):401-11. PubMed ID: 7590592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyanide-induced cytochrome a,a3 oxidation-reduction responses in rat brain in vivo.
    Piantadosi CA; Sylvia AL; Jöbsis FF
    J Clin Invest; 1983 Oct; 72(4):1224-33. PubMed ID: 6313756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local tissue oxygen tension-cytochrome a,a3 redox relationships in rat cerebral cortex in vivo.
    Kreisman NR; Sick TJ; LaManna JC; Rosenthal M
    Brain Res; 1981 Aug; 218(1-2):161-74. PubMed ID: 6268243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transient hypoxia-ischemia in rats: changes in diffusion-sensitive MR imaging findings, extracellular space, and Na+-K+ -adenosine triphosphatase and cytochrome oxidase activity.
    Qiao M; Malisza KL; Del Bigio MR; Tuor UI
    Radiology; 2002 Apr; 223(1):65-75. PubMed ID: 11930049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potassium ion homeostasis and mitochondrial redox status of turtle brain during and after ischemia.
    Sick TJ; Chasnoff EP; Rosenthal M
    Am J Physiol; 1985 May; 248(5 Pt 2):R531-40. PubMed ID: 2986469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Changes in local cerebral glucose utilization, DC potential and extracellular potassium in various degree of experimental cerebral contusion].
    Kubota M; Nakamura T; Sunami K; Ozawa Y; Namba H; Yamaura A; Makino H
    No To Shinkei; 1989 Aug; 41(8):799-805. PubMed ID: 2803836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Incomplete transient ischemia: a non-destructive evaluation of in vivo cerebral metabolism and hemodynamics in rat brain.
    Wiernsperger N; Sylvia AL; Jöbsis FF
    Stroke; 1981; 12(6):864-8. PubMed ID: 6272456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light scattering change precedes loss of cerebral adenosine triphosphate in a rat global ischemic brain model.
    Kawauchi S; Sato S; Ooigawa H; Nawashiro H; Ishihara M; Kikuchi M
    Neurosci Lett; 2009 Aug; 459(3):152-6. PubMed ID: 19446006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cerebral extracellular potassium concentration change and cerebral impedance change in short-term ischemia in gerbil.
    Yamaguchi T
    Bull Tokyo Med Dent Univ; 1986 Mar; 33(1):1-8. PubMed ID: 3457643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid monitoring of diffusion, DC potential, and blood oxygenation changes during global ischemia. Effects of hypoglycemia, hyperglycemia, and TTX.
    de Crespigny AJ; Röther J; Beaulieu C; Moseley ME; Hoehn M
    Stroke; 1999 Oct; 30(10):2212-22. PubMed ID: 10512931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The immunosuppressant drug FK506 ameliorates secondary mitochondrial dysfunction following transient focal cerebral ischemia in the rat.
    Nakai A; Kuroda S; Kristián T; Siesjö BK
    Neurobiol Dis; 1997; 4(3-4):288-300. PubMed ID: 9361306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.