BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 1849909)

  • 21. Changes in extracellular acid-base homeostasis in cerebral ischemia.
    Taylor DL; Obrenovitch TP; Symon L
    Neurochem Res; 1996 Sep; 21(9):1013-21. PubMed ID: 8897464
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of transient hypoxia on oxygenation of the developing rat brain: relationships among haemoglobin saturation, autoregulation of blood flow and mitochondrial redox state.
    Sylvia AL; Seidler FJ; Slotkin TA
    J Dev Physiol; 1989 Nov; 12(5):287-92. PubMed ID: 2634069
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Concepts of brain oxygen sufficiency during seizures.
    Kreisman NR; Sick TJ; Rosenthal M
    Adv Exp Med Biol; 1984; 180():381-92. PubMed ID: 6099961
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cerebral circulatory responses to hypercapnia and hypoxia in the recovery period following complete and incomplete cerebral ischemia in the rat.
    Kågström E; Smith ML; Siesjö BK
    Acta Physiol Scand; 1983 Jul; 118(3):281-91. PubMed ID: 6414251
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cumulative effect of repetitive ischemia: pathophysiological findings.
    Nagashima G
    Bull Tokyo Med Dent Univ; 1994 Dec; 41(2):23-36. PubMed ID: 8001197
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vivo modulation of norepinephrine-induced cerebral oxygenation states by hypoxia and hyperoxia.
    Sylvia AL; Piantadosi CA
    Brain Res; 1985 Jul; 338(2):281-8. PubMed ID: 2992687
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ion channel involvement in anoxic depolarization induced by cardiac arrest in rat brain.
    Xie Y; Zacharias E; Hoff P; Tegtmeier F
    J Cereb Blood Flow Metab; 1995 Jul; 15(4):587-94. PubMed ID: 7540620
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mitochondrial redox responses to cerebral ischaemia produced by four-vessel occlusion in the rat.
    Harrison M; Sick TJ; Rosenthal M
    Neurol Res; 1985 Sep; 7(3):142-8. PubMed ID: 2866458
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Early suppression of intracranial EEG signals predicts ischemic outcome in adult mice following hypoxia-ischemia.
    El-Hayek YH; Wu C; Zhang L
    Exp Neurol; 2011 Oct; 231(2):295-303. PubMed ID: 21821027
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Relative hypoperfusion in rat cerebral cortex during recurrent seizures.
    Kreisman NR; Magee JC; Brizzee BL
    J Cereb Blood Flow Metab; 1991 Jan; 11(1):77-87. PubMed ID: 1845766
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The dissociation of cerebral blood flow, metabolism, and function in the early stages of developing cerebral infarction.
    Kogure K; Busto R; Schwartzman RJ; Scheinberg P
    Ann Neurol; 1980 Sep; 8(3):278-90. PubMed ID: 7436371
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of arterial hypoxia on the cerebrocortical redox state, vascular volume, oxygen tension, electrical activity and potassium ion concentration.
    Dóra E; Zeuthen T; Silver IA; Chance B; Kovách AG
    Acta Physiol Acad Sci Hung; 1979; 54(4):319-31. PubMed ID: 232966
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of pulmonary edema in phasic changes of cerebral oxygenation during serial seizures.
    Kreisman NR; Hodin RA; Rosenthal M; Sick TJ
    Brain Res; 1987 Aug; 417(2):335-42. PubMed ID: 2820545
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cerebral energy metabolism and computerized EEG. Analysis following transient ischemia in the rat.
    Barzaghi F; Dragonetti M; Formento ML; Boissier JR
    J Pharmacol; 1982; 13(4):553-63. PubMed ID: 7154667
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of preischemia cyclooxygenase inhibition by zomepirac sodium on reflow, cerebral autoregulation, and EEG recovery in the cat after global ischemia.
    Stevens MK; Yaksh TL; Hansen RB; Anderson RE
    J Cereb Blood Flow Metab; 1986 Dec; 6(6):691-702. PubMed ID: 3098746
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cerebral succinic dehydrogenase cytochrome oxidase and mono-amine oxidase activity in experimental anoxic-ischaemic brain damage.
    SPECTOR RG
    Br J Exp Pathol; 1963 Jun; 44(3):251-4. PubMed ID: 13989969
    [No Abstract]   [Full Text] [Related]  

  • 37. Cerebral energy state, mitochondrial function, and redox state measurements in transient ischemia.
    Rehncrona S; Mela L; Chance B
    Fed Proc; 1979 Oct; 38(11):2489-92. PubMed ID: 488372
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improvement of oxygen supply by an artificial carrier in combination with normobaric oxygenation decreases the volume of tissue hypoxia and tissue damage from transient focal cerebral ischemia.
    Seiffge DJ; Lapina NE; Tsagogiorgas C; Theisinger B; Henning RH; Schilling L
    Exp Neurol; 2012 Sep; 237(1):18-25. PubMed ID: 22728375
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oxygen insufficiency during hypoxic hypoxia in rat brain cortex.
    LaManna JC; Light AI; Peretsman SJ; Rosenthal M
    Brain Res; 1984 Feb; 293(2):313-8. PubMed ID: 6320971
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Behaviour of the mitochondrial respiratory chain in vivo.
    Jöbsis FF; Rosenthal M
    Ciba Found Symp; 1978 Mar; (56):149-69. PubMed ID: 208822
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.