BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 18499115)

  • 1. Low electroosmotic flow measurement by tilting microchip.
    Zhou F; Wang W; Wu WY; Zhang JR; Zhu JJ
    J Chromatogr A; 2008 Jun; 1194(2):221-4. PubMed ID: 18499115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low EOF rate measurement based on constant effective mobility in microchip CE.
    Wang W; Zhao L; Zhou F; Zhang JR; Zhu JJ; Chen HY
    Electrophoresis; 2007 Aug; 28(16):2893-6. PubMed ID: 17702065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Versatile method for electroosmotic flow measurements in microchip electrophoresis.
    Shakalisava Y; Poitevin M; Viovy JL; Descroix S
    J Chromatogr A; 2009 Feb; 1216(6):1030-3. PubMed ID: 19118836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of electroosmotic flow in capillary and microchip electrophoresis.
    Wang W; Zhou F; Zhao L; Zhang JR; Zhu JJ
    J Chromatogr A; 2007 Nov; 1170(1-2):1-8. PubMed ID: 17915240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EOF measurement by detection of a sampling zone with end-channel amperometry in microchip CE.
    Wang W; Zhao L; Jiang LP; Zhang JR; Zhu JJ; Chen HY
    Electrophoresis; 2006 Dec; 27(24):5132-7. PubMed ID: 17161004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Indirect amperometric measurement of electroosmotic flow rates and effective mobilities in microchip capillary electrophoresis.
    Wang W; Zhao L; Zhang JR; Zhu JJ
    J Chromatogr A; 2007 Feb; 1142(2):209-13. PubMed ID: 17222859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring electroosmotic flow in microchips and capillaries.
    Gilman SD; Chapman PJ
    Methods Mol Biol; 2006; 339():187-202. PubMed ID: 16790874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved hydrostatic pressure sample injection by tilting the microchip towards the disposable miniaturized CE device.
    Wang W; Zhou F; Zhao L; Zhang JR; Zhu JJ
    Electrophoresis; 2008 Feb; 29(3):561-6. PubMed ID: 18186531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication and performance of poly(methyl methacrylate) microfluidic chips with fiber cores.
    Fan H; Chen Z; Zhang L; Yang P; Chen G
    J Chromatogr A; 2008 Feb; 1179(2):224-8. PubMed ID: 18096173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [A novel method for the direct measurement of electroosmotic flow velocity on microfluidic chips].
    Sun Y; Shen Z; Zeng C
    Se Pu; 2007 Sep; 25(5):690-3. PubMed ID: 18161319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling of electroosmotic and electrophoretic mobilization in capillary and microchip isoelectric focusing.
    Thormann W; Caslavska J; Mosher RA
    J Chromatogr A; 2007 Jul; 1155(2):154-63. PubMed ID: 17307189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of PVP on the electroosmotic mobility of wet-etched glass microchannels.
    Milanova D; Chambers RD; Bahga SS; Santiago JG
    Electrophoresis; 2012 Nov; 33(21):3259-62. PubMed ID: 23065690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electroosmotic pump-assisted capillary electrophoresis of proteins.
    Xu L; Dong XY; Sun Y
    J Chromatogr A; 2009 Aug; 1216(32):6071-6. PubMed ID: 19576588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface modification with BSA blocking based on in situ synthesized gold nanoparticles in poly(dimethylsiloxane) microchip.
    Fan DH; Yuan SW; Shen YM
    Colloids Surf B Biointerfaces; 2010 Feb; 75(2):608-11. PubMed ID: 19896345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Miniaturized two-dimensional capillary electrophoresis on a microchip for analysis of the tryptic digest of proteins.
    Cong Y; Zhang L; Tao D; Liang Y; Zhang W; Zhang Y
    J Sep Sci; 2008 Feb; 31(3):588-94. PubMed ID: 18219655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microchip electrophoresis of oligosaccharides using large-volume sample stacking with an electroosmotic flow pump in a single channel.
    Kawai T; Sueyoshi K; Kitagawa F; Otsuka K
    Anal Chem; 2010 Aug; 82(15):6504-11. PubMed ID: 20586466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of zeta potential of electroosmotic flow in a microchannel using a reduced-order model.
    Park HM; Hong SM; Lee JS
    Biomed Microdevices; 2007 Oct; 9(5):751-60. PubMed ID: 17530411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electroosmotic flow in poly(dimethylsiloxane) microchannels.
    Bao N; Xu JJ; Zhang Q; Hang JL; Chen HY
    J Chromatogr A; 2005 Dec; 1099(1-2):203-6. PubMed ID: 16303131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multilayer poly(vinyl alcohol)-adsorbed coating on poly(dimethylsiloxane) microfluidic chips for biopolymer separation.
    Wu D; Luo Y; Zhou X; Dai Z; Lin B
    Electrophoresis; 2005 Jan; 26(1):211-8. PubMed ID: 15624173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies of electroosmotic flow and the effects of protein adsorption in plasma-polymerized microchannel surfaces.
    Salim M; Wright PC; McArthur SL
    Electrophoresis; 2009 Jun; 30(11):1877-87. PubMed ID: 19517430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.