BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 18499227)

  • 1. Hydrolytic and ligninolytic enzyme activities in the Pb contaminated soil inoculated with litter-decomposing fungi.
    Kähkönen MA; Lankinen P; Hatakka A
    Chemosphere; 2008 Jun; 72(5):708-14. PubMed ID: 18499227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of Pb contamination in boreal forest soil on the growth and ligninolytic activity of litter-decomposing fungi.
    Tuomela M; Steffen KT; Kerko E; Hartikainen H; Hofrichter M; Hatakka A
    FEMS Microbiol Ecol; 2005 Jun; 53(1):179-86. PubMed ID: 16329939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial competition, lack in macronutrients, and acidity as main obstacles to the transfer of basidiomycetous ground fungi into (organically or heavy-metal contaminated) soils.
    Gramss G; Bergmann H
    J Basic Microbiol; 2007 Aug; 47(4):309-16. PubMed ID: 17647209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impacts of chemical amendment and plant growth on lead speciation and enzyme activities in a shooting range soil: an x-ray absorption fine structure investigation.
    Hashimoto Y; Matsufuru H; Takaoka M; Tanida H; Sato T
    J Environ Qual; 2009; 38(4):1420-8. PubMed ID: 19465717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An evaluation of soil colonisation potential of selected fungi and their production of ligninolytic enzymes for use in soil bioremediation applications.
    McErlean C; Marchant R; Banat IM
    Antonie Van Leeuwenhoek; 2006 Aug; 90(2):147-58. PubMed ID: 16820969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of bioconversion of high-molecular mass polycyclic aromatic hydrocarbons in contaminated non-sterile soil by litter-decomposing fungi.
    Steffen KT; Schubert S; Tuomela M; Hatakka A; Hofrichter M
    Biodegradation; 2007 Jun; 18(3):359-69. PubMed ID: 17091353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lead contamination of an old shooting range affecting the local ecosystem--A case study with a holistic approach.
    Rantalainen ML; Torkkeli M; Strömmer R; Setälä H
    Sci Total Environ; 2006 Oct; 369(1-3):99-108. PubMed ID: 16814846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of lead contamination on soil enzymatic activities, microbial biomass, and rice physiological indices in soil-lead-rice (Oryza sativa L.) system.
    Zeng LS; Liao M; Chen CL; Huang CY
    Ecotoxicol Environ Saf; 2007 May; 67(1):67-74. PubMed ID: 16806470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of lead contamination on soil microbial activity and rice physiological indices in soil-Pb-rice (Oryza sativa L.) system.
    Zeng LS; Liao M; Chen CL; Huang CY
    Chemosphere; 2006 Oct; 65(4):567-74. PubMed ID: 16581104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential degradation of oak (Quercus petraea) leaf litter by litter-decomposing basidiomycetes.
    Steffen KT; Cajthaml T; Snajdr J; Baldrian P
    Res Microbiol; 2007 Jun; 158(5):447-55. PubMed ID: 17537615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation of aromatic hydrocarbons by white-rot fungi in a historically contaminated soil.
    D'Annibale A; Ricci M; Leonardi V; Quaratino D; Mincione E; Petruccioli M
    Biotechnol Bioeng; 2005 Jun; 90(6):723-31. PubMed ID: 15858792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mycelial growth and solid-state fermentation of lignocellulosic waste by white-rot fungus Phanerochaete chrysosporium under lead stress.
    Huang DL; Zeng GM; Feng CL; Hu S; Zhao MH; Lai C; Zhang Y; Jiang XY; Liu HL
    Chemosphere; 2010 Nov; 81(9):1091-7. PubMed ID: 20951406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mineralisation of 14C-labelled synthetic lignin and ligninolytic enzyme activities of litter-decomposing basidiomycetous fungi.
    Steffen KT; Hofrichter M; Hatakka A
    Appl Microbiol Biotechnol; 2000 Dec; 54(6):819-25. PubMed ID: 11152075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cooperation between ligninolytic enzymes produced by superior mixed flora.
    Wang HL; Li ZY; Guo WY; Wang ZY; Pan F
    J Environ Sci (China); 2005; 17(4):620-2. PubMed ID: 16158591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of two organic wastes in a soil polluted by lead: effects on the soil enzymatic activities.
    Tejada M; Hernandez MT; Garcia C
    J Environ Qual; 2007; 36(1):216-25. PubMed ID: 17215229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soil processes and tree growth at shooting ranges in a boreal forest reflect contamination history and lead-induced changes in soil food webs.
    Selonen S; Setälä H
    Sci Total Environ; 2015 Jun; 518-519():320-7. PubMed ID: 25770944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. α-L-rhamnosidase and β-D-glucosidase activities in fungal strains isolated from alkaline soils and their potential in naringin hydrolysis.
    Elíades LA; Rojas NL; Cabello MN; Voget CE; Saparrat MC
    J Basic Microbiol; 2011 Dec; 51(6):659-65. PubMed ID: 21952976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fractionation and bioavailability of metals and their impacts on microbial properties in sewage irrigated soil.
    Bhattacharyya P; Tripathy S; Chakrabarti K; Chakraborty A; Banik P
    Chemosphere; 2008 Jun; 72(4):543-50. PubMed ID: 18471858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 'Alperujo' compost amendment of contaminated calcareous and acidic soils: effects on growth and trace element uptake by five Brassica species.
    Fornes F; García-de-la-Fuente R; Belda RM; Abad M
    Bioresour Technol; 2009 Sep; 100(17):3982-90. PubMed ID: 19369067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stability of the fluorogenic enzyme substrates and pH optima of enzyme activities in different Finnish soils.
    Niemi RM; Vepsäläinen M
    J Microbiol Methods; 2005 Feb; 60(2):195-205. PubMed ID: 15590094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.