These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 18499349)
21. A cytoarchitectonic and TH-immunohistochemistry characterization of the dopamine cell groups in the substantia nigra, ventral tegmental area and retrorubral field in the rock cavy (Kerodon rupestris). Cavalcanti JR; Soares JG; Oliveira FG; Guzen FP; Pontes AL; Sousa TB; Cavalcante JS; Nascimento ES; Cavalcante JC; Costa MS J Chem Neuroanat; 2014 Jan; 55():58-66. PubMed ID: 24444614 [TBL] [Abstract][Full Text] [Related]
22. Postnatal changes in the distribution and morphology of rat substantia nigra dopaminergic neurons. Tepper JM; Damlama M; Trent F Neuroscience; 1994 May; 60(2):469-77. PubMed ID: 7915412 [TBL] [Abstract][Full Text] [Related]
23. Physiological properties of zebra finch ventral tegmental area and substantia nigra pars compacta neurons. Gale SD; Perkel DJ J Neurophysiol; 2006 Nov; 96(5):2295-306. PubMed ID: 16870835 [TBL] [Abstract][Full Text] [Related]
24. Temporal and spatial increase of astroglial basic fibroblast growth factor synthesis after 6-hydroxydopamine-induced degeneration of the nigrostriatal dopamine neurons. Chadi G; Cao Y; Pettersson RF; Fuxe K Neuroscience; 1994 Aug; 61(4):891-910. PubMed ID: 7838386 [TBL] [Abstract][Full Text] [Related]
25. Programming of Dopaminergic Neurons by Neonatal Sex Hormone Exposure: Effects on Dopamine Content and Tyrosine Hydroxylase Expression in Adult Male Rats. Espinosa P; Silva RA; Sanguinetti NK; Venegas FC; Riquelme R; González LF; Cruz G; Renard GM; Moya PR; Sotomayor-Zárate R Neural Plast; 2016; 2016():4569785. PubMed ID: 26904299 [TBL] [Abstract][Full Text] [Related]
26. Morphological study of the tegmental pedunculopontine nucleus, substantia nigra and subthalamic nucleus, and their interconnections in rat organotypic culture. Ichinohe N; Teng B; Kitai ST Anat Embryol (Berl); 2000 Jun; 201(6):435-53. PubMed ID: 10909898 [TBL] [Abstract][Full Text] [Related]
27. Chemogenetic activation of dopamine neurons in the ventral tegmental area, but not substantia nigra, induces hyperactivity in rats. Boekhoudt L; Omrani A; Luijendijk MC; Wolterink-Donselaar IG; Wijbrans EC; van der Plasse G; Adan RA Eur Neuropsychopharmacol; 2016 Nov; 26(11):1784-1793. PubMed ID: 27712862 [TBL] [Abstract][Full Text] [Related]
30. Estrogen effects on tyrosine hydroxylase-immunoreactive cells in the ventral mesencephalon of the female rat: further evidence for the two cell hypothesis of dopamine function. Zsarnovszky A; Scalise TJ; Horvath TL; Naftolin F Brain Res; 2000 Jun; 868(2):363-6. PubMed ID: 10854590 [TBL] [Abstract][Full Text] [Related]
31. Effect of acute and chronic administration of the selective 5-HT2C receptor antagonist SB-243213 on midbrain dopamine neurons in the rat: an in vivo extracellular single cell study. Blackburn TP; Minabe Y; Middlemiss DN; Shirayama Y; Hashimoto K; Ashby CR Synapse; 2002 Dec; 46(3):129-39. PubMed ID: 12325040 [TBL] [Abstract][Full Text] [Related]
32. Synaptic innervation of midbrain dopaminergic neurons by glutamate-enriched terminals in the squirrel monkey. Smith Y; Charara A; Parent A J Comp Neurol; 1996 Jan; 364(2):231-53. PubMed ID: 8788247 [TBL] [Abstract][Full Text] [Related]
33. Signalling through phospholipase C beta 4 is not essential for midbrain dopaminergic neuron survival. Smits SM; van der Nobelen S; Hornman KJ; von Oerthel L; Burbach JP; Smidt MP Neuroscience; 2005; 136(1):171-9. PubMed ID: 16198487 [TBL] [Abstract][Full Text] [Related]
34. Immunohistochemical localization of N-methyl-D-aspartate and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor subunits in the substantia nigra pars compacta of the rat. Albers DS; Weiss SW; Iadarola MJ; Standaert DG Neuroscience; 1999 Mar; 89(1):209-20. PubMed ID: 10051230 [TBL] [Abstract][Full Text] [Related]
35. A cytoarchitectonic and chemoarchitectonic analysis of the dopamine cell groups in the substantia nigra, ventral tegmental area, and retrorubral field in the mouse. Fu Y; Yuan Y; Halliday G; Rusznák Z; Watson C; Paxinos G Brain Struct Funct; 2012 Apr; 217(2):591-612. PubMed ID: 21935672 [TBL] [Abstract][Full Text] [Related]
36. Molecular anatomy of the development of the human substantia nigra. Aubert I; Brana C; Pellevoisin C; Giros B; Caille I; Carles D; Vital C; Bloch B J Comp Neurol; 1997 Mar; 379(1):72-87. PubMed ID: 9057113 [TBL] [Abstract][Full Text] [Related]
37. Dissociated high-purity dopaminergic neuron cultures from the substantia nigra and the ventral tegmental area of the postnatal rat. Masuko S; Nakajima S; Nakajima Y Neuroscience; 1992 Jul; 49(2):347-64. PubMed ID: 1359454 [TBL] [Abstract][Full Text] [Related]
38. Nuclear organization of the substantia nigra, ventral tegmental area and retrorubral field of the common marmoset (Callithrix jacchus): A cytoarchitectonic and TH-immunohistochemistry study. Cavalcanti JRLP; Pontes ALB; Fiuza FP; Silva KDA; Guzen FP; Lucena EES; Nascimento-Júnior ES; Cavalcante JC; Costa MSMO; Engelberth RCGJ; Cavalcante JS J Chem Neuroanat; 2016 Nov; 77():100-109. PubMed ID: 27292410 [TBL] [Abstract][Full Text] [Related]
39. Gabaergic transmission and tyrosine hydroxylase expression in the nigral dopaminergic neurons: an in vivo study using a reversible ischemia model of rats. Yamada K; Goto S; Yoshikawa M; Ushio Y Neuroscience; 1996 Aug; 73(3):783-9. PubMed ID: 8809797 [TBL] [Abstract][Full Text] [Related]
40. Intracerebroventricular administration of NMDA-R1 antisense oligodeoxynucleotide significantly alters the activity of ventral tegmental area dopamine neurons: an electrophysiological study. Tajiri K; Emori K; Murata M; Tanaka K; Suzuki M; Uehara T; Sumiyoshi T; Ashby CR; Kurachi M Synapse; 2001 Jun; 40(4):275-81. PubMed ID: 11309843 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]