These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 1849945)

  • 21. Opioids and pain.
    Kanjhan R
    Clin Exp Pharmacol Physiol; 1995; 22(6-7):397-403. PubMed ID: 8582088
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bidirectional effects of opioids in motivational processes and the involvement of D1 dopamine receptors.
    Herz A
    NIDA Res Monogr; 1988; 90():17-26. PubMed ID: 2855853
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hyperpolarization by opioids acting on mu-receptors of a sub-population of rat periaqueductal gray neurones in vitro.
    Chieng B; Christie MJ
    Br J Pharmacol; 1994 Sep; 113(1):121-8. PubMed ID: 7812601
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Opioid receptor affinities of kappa agonists, agonist/antagonists and antagonists in vitro and in vivo.
    Wood PL
    Prog Neuropsychopharmacol Biol Psychiatry; 1983; 7(4-6):657-62. PubMed ID: 6320302
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Opioid-induced bowel dysfunction: pathophysiology and potential new therapies.
    Kurz A; Sessler DI
    Drugs; 2003; 63(7):649-71. PubMed ID: 12656645
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Clinical evidence for different narcotic receptors and relevance for the clinician.
    Martin WR
    Ann Emerg Med; 1986 Sep; 15(9):1026-9. PubMed ID: 3017158
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Targeting peripheral opioid receptors to promote analgesic and anti-inflammatory actions.
    Iwaszkiewicz KS; Schneider JJ; Hua S
    Front Pharmacol; 2013; 4():132. PubMed ID: 24167491
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of the in vitro efficacy of mu, delta, kappa and ORL1 receptor agonists and non-selective opioid agonists in dog brain membranes.
    Lester PA; Traynor JR
    Brain Res; 2006 Feb; 1073-1074():290-6. PubMed ID: 16443205
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spinal antinociceptive actions of mu- and kappa-opioids: the importance of stimulus intensity in determining 'selectivity' between reflexes to different modalities of noxious stimulus.
    Parsons CG; Headley PM
    Br J Pharmacol; 1989 Oct; 98(2):523-32. PubMed ID: 2555011
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Involvement of the mu-opiate receptor in peripheral analgesia.
    Levine JD; Taiwo YO
    Neuroscience; 1989; 32(3):571-5. PubMed ID: 2557556
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antinociceptive effects of the novel opioid peptide BW443C compared with classical opiates; peripheral versus central actions.
    Follenfant RL; Hardy GW; Lowe LA; Schneider C; Smith TW
    Br J Pharmacol; 1988 Jan; 93(1):85-92. PubMed ID: 3349235
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A pharmacological profile of the novel, peripherally-selective kappa-opioid receptor agonist, EMD 61753.
    Barber A; Bartoszyk GD; Bender HM; Gottschlich R; Greiner HE; Harting J; Mauler F; Minck KO; Murray RD; Simon M
    Br J Pharmacol; 1994 Dec; 113(4):1317-27. PubMed ID: 7889287
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differential inhibitory effects of opioids on cigarette smoke, capsaicin and electrically-induced goblet cell secretion in guinea-pig trachea.
    Kuo HP; Rohde JA; Barnes PJ; Rogers DF
    Br J Pharmacol; 1992 Feb; 105(2):361-6. PubMed ID: 1373100
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Peripheral opioid receptors and their role in postoperative pain management.].
    Stein C
    Schmerz; 1993 Mar; 7(1):4-7. PubMed ID: 18415412
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Development of opioid tolerance -- molecular mechanisms and clinical consequences].
    Freye E; Latasch L
    Anasthesiol Intensivmed Notfallmed Schmerzther; 2003 Jan; 38(1):14-26. PubMed ID: 12522725
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Selective blockade of peripheral delta opioid agonist induced antinociception by intrathecal administration of delta receptor antisense oligodeoxynucleotide.
    Bilsky EJ; Wang T; Lai J; Porreca F
    Neurosci Lett; 1996 Dec; 220(3):155-8. PubMed ID: 8994216
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multiple opioid receptor systems in brain and spinal cord: Part I.
    Yaksh TL
    Eur J Anaesthesiol; 1984 Jun; 1(2):171-99. PubMed ID: 6152613
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Targeted nanoparticles that mimic immune cells in pain control inducing analgesic and anti-inflammatory actions: a potential novel treatment of acute and chronic pain condition.
    Hua S; Cabot PJ
    Pain Physician; 2013; 16(3):E199-216. PubMed ID: 23703419
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exogenous opioids influence the microcirculation of injured peripheral nerves.
    Schaafsma L; Sun H; Zochodne D
    Am J Physiol; 1997 Jan; 272(1 Pt 2):H76-82. PubMed ID: 9038924
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Delta opioid-like discriminative stimulus effects of mu opioids in pigeons discriminating the delta opioid BW373U86 from saline.
    Picker MJ; Cook CD
    Behav Pharmacol; 1998 Jul; 9(4):319-28. PubMed ID: 10065920
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.