These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 1849961)
1. Block of current through single calcium channels by Fe, Co, and Ni. Location of the transition metal binding site in the pore. Winegar BD; Kelly R; Lansman JB J Gen Physiol; 1991 Feb; 97(2):351-67. PubMed ID: 1849961 [TBL] [Abstract][Full Text] [Related]
2. Voltage-dependent block by zinc of single calcium channels in mouse myotubes. Winegar BD; Lansman JB J Physiol; 1990 Jun; 425():563-78. PubMed ID: 2170633 [TBL] [Abstract][Full Text] [Related]
3. Ni2+ slows the activation kinetics of high-voltage-activated Ca2+ currents in cortical neurons: evidence for a mechanism of action independent of channel-pore block. Magistretti J; Brevi S; de Curtis M J Membr Biol; 2001 Feb; 179(3):243-62. PubMed ID: 11246422 [TBL] [Abstract][Full Text] [Related]
4. Blockade of current through single calcium channels by trivalent lanthanide cations. Effect of ionic radius on the rates of ion entry and exit. Lansman JB J Gen Physiol; 1990 Apr; 95(4):679-96. PubMed ID: 2159974 [TBL] [Abstract][Full Text] [Related]
5. Functional characterization of ion permeation pathway in the N-type Ca2+ channel. Wakamori M; Strobeck M; Niidome T; Teramoto T; Imoto K; Mori Y J Neurophysiol; 1998 Feb; 79(2):622-34. PubMed ID: 9463426 [TBL] [Abstract][Full Text] [Related]
6. Blockade of current through single calcium channels by Cd2+, Mg2+, and Ca2+. Voltage and concentration dependence of calcium entry into the pore. Lansman JB; Hess P; Tsien RW J Gen Physiol; 1986 Sep; 88(3):321-47. PubMed ID: 2428920 [TBL] [Abstract][Full Text] [Related]
7. Ion permeation through the L-type Ca2+ channel in rat phaeochromocytoma cells: two sets of ion binding sites in the pore. Kuo CC; Hess P J Physiol; 1993 Jul; 466():629-55. PubMed ID: 8410710 [TBL] [Abstract][Full Text] [Related]
8. Cardiac calcium channels in planar lipid bilayers. L-type channels and calcium-permeable channels open at negative membrane potentials. Rosenberg RL; Hess P; Tsien RW J Gen Physiol; 1988 Jul; 92(1):27-54. PubMed ID: 2844956 [TBL] [Abstract][Full Text] [Related]
9. Block of the L-type Ca2+ channel pore by external and internal Mg2+ in rat phaeochromocytoma cells. Kuo CC; Hess P J Physiol; 1993 Jul; 466():683-706. PubMed ID: 8410712 [TBL] [Abstract][Full Text] [Related]
10. Characterization of the high-affinity Ca2+ binding sites in the L-type Ca2+ channel pore in rat phaeochromocytoma cells. Kuo CC; Hess P J Physiol; 1993 Jul; 466():657-82. PubMed ID: 8410711 [TBL] [Abstract][Full Text] [Related]
11. Block of single L-type Ca2+ channels in skeletal muscle fibers by aminoglycoside antibiotics. Haws CM; Winegar BD; Lansman JB J Gen Physiol; 1996 Mar; 107(3):421-32. PubMed ID: 8868052 [TBL] [Abstract][Full Text] [Related]
12. Open channel block by gadolinium ion of the stretch-inactivated ion channel in mdx myotubes. Franco A; Winegar BD; Lansman JB Biophys J; 1991 Jun; 59(6):1164-70. PubMed ID: 1714778 [TBL] [Abstract][Full Text] [Related]
13. Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. Castelli L; Tanzi F; Taglietti V; Magistretti J J Membr Biol; 2003 Oct; 195(3):121-36. PubMed ID: 14724759 [TBL] [Abstract][Full Text] [Related]
14. Permeation and gating properties of the L-type calcium channel in mouse pancreatic beta cells. Smith PA; Aschroft FM; Fewtrell CM J Gen Physiol; 1993 May; 101(5):767-97. PubMed ID: 7687645 [TBL] [Abstract][Full Text] [Related]
15. The dihydropyridine-sensitive calcium channel subtype in cone photoreceptors. Wilkinson MF; Barnes S J Gen Physiol; 1996 May; 107(5):621-30. PubMed ID: 8740375 [TBL] [Abstract][Full Text] [Related]
16. Ion-dependent inactivation of barium current through L-type calcium channels. Ferreira G; Yi J; Ríos E; Shirokov R J Gen Physiol; 1997 Apr; 109(4):449-61. PubMed ID: 9101404 [TBL] [Abstract][Full Text] [Related]
17. Interactions between divalent cations and the gating machinery of cyclic GMP-activated channels in salamander retinal rods. Karpen JW; Brown RL; Stryer L; Baylor DA J Gen Physiol; 1993 Jan; 101(1):1-25. PubMed ID: 7679715 [TBL] [Abstract][Full Text] [Related]
18. Contrasting effects of Cd2+ and Co2+ on the blocking/unblocking of human Cav3 channels. Díaz D; Bartolo R; Delgadillo DM; Higueldo F; Gomora JC J Membr Biol; 2005 Sep; 207(2):91-105. PubMed ID: 16477530 [TBL] [Abstract][Full Text] [Related]
19. External cadmium and internal calcium block of single calcium channels in smooth muscle cells from rabbit mesenteric artery. Huang Y; Quayle JM; Worley JF; Standen NB; Nelson MT Biophys J; 1989 Nov; 56(5):1023-8. PubMed ID: 2481511 [TBL] [Abstract][Full Text] [Related]
20. Permeation in the dihydropyridine-sensitive calcium channel. Multi-ion occupancy but no anomalous mole-fraction effect between Ba2+ and Ca2+. Yue DT; Marban E J Gen Physiol; 1990 May; 95(5):911-39. PubMed ID: 2163433 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]