BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

707 related articles for article (PubMed ID: 18500335)

  • 21. mRNA-display-based selections for proteins with desired functions: a protease-substrate case study.
    Valencia CA; Cotten SW; Dong B; Liu R
    Biotechnol Prog; 2008; 24(3):561-9. PubMed ID: 18471027
    [TBL] [Abstract][Full Text] [Related]  

  • 22. PhosphoPOINT: a comprehensive human kinase interactome and phospho-protein database.
    Yang CY; Chang CH; Yu YL; Lin TC; Lee SA; Yen CC; Yang JM; Lai JM; Hong YR; Tseng TL; Chao KM; Huang CY
    Bioinformatics; 2008 Aug; 24(16):i14-20. PubMed ID: 18689816
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comprehensive and reliable phosphorylation site mapping of individual phosphoproteins by combination of multiple stage mass spectrometric analysis with a target-decoy database search.
    Han G; Ye M; Jiang X; Chen R; Ren J; Xue Y; Wang F; Song C; Yao X; Zou H
    Anal Chem; 2009 Jul; 81(14):5794-805. PubMed ID: 19522514
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High resolution analysis of snake venom metalloproteinase (SVMP) peptide bond cleavage specificity using proteome based peptide libraries and mass spectrometry.
    Paes Leme AF; Escalante T; Pereira JG; Oliveira AK; Sanchez EF; Gutiérrez JM; Serrano SM; Fox JW
    J Proteomics; 2011 Apr; 74(4):401-10. PubMed ID: 21156218
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proteomic techniques and activity-based probes for the system-wide study of proteolysis.
    auf dem Keller U; Schilling O
    Biochimie; 2010 Nov; 92(11):1705-14. PubMed ID: 20493233
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proteome-derived peptide library for the elucidation of the cleavage specificity of HF3, a snake venom metalloproteinase.
    Bertholim L; Zelanis A; Oliveira AK; Serrano SM
    Amino Acids; 2016 May; 48(5):1331-5. PubMed ID: 27020778
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Variable context Markov chains for HIV protease cleavage site prediction.
    Oğul H
    Biosystems; 2009 Jun; 96(3):246-50. PubMed ID: 19758550
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Activity based fingerprinting of proteases using FRET peptides.
    Sun H; Panicker RC; Yao SQ
    Biopolymers; 2007; 88(2):141-9. PubMed ID: 17206627
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of Protease Specificity by Combining Proteome-Derived Peptide Libraries and Quantitative Proteomics.
    Biniossek ML; Niemer M; Maksimchuk K; Mayer B; Fuchs J; Huesgen PF; McCafferty DG; Turk B; Fritz G; Mayer J; Haecker G; Mach L; Schilling O
    Mol Cell Proteomics; 2016 Jul; 15(7):2515-24. PubMed ID: 27122596
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Introducing the CPL/MUW proteome database: interpretation of human liver and liver cancer proteome profiles by referring to isolated primary cells.
    Wimmer H; Gundacker NC; Griss J; Haudek VJ; Stättner S; Mohr T; Zwickl H; Paulitschke V; Baron DM; Trittner W; Kubicek M; Bayer E; Slany A; Gerner C
    Electrophoresis; 2009 Jun; 30(12):2076-89. PubMed ID: 19582709
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Workflow for large scale detection and validation of peptide modifications by RPLC-LTQ-Orbitrap: application to the Arabidopsis thaliana leaf proteome and an online modified peptide library.
    Zybailov B; Sun Q; van Wijk KJ
    Anal Chem; 2009 Oct; 81(19):8015-24. PubMed ID: 19725545
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mapping protease substrates by using a biotinylated phage substrate library.
    Scholle MD; Kriplani U; Pabon A; Sishtla K; Glucksman MJ; Kay BK
    Chembiochem; 2006 May; 7(5):834-8. PubMed ID: 16628754
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Discovery of amino acid motifs for thrombin cleavage and validation using a model substrate.
    Ng NM; Pierce JD; Webb GI; Ratnikov BI; Wijeyewickrema LC; Duncan RC; Robertson AL; Bottomley SP; Boyd SE; Pike RN
    Biochemistry; 2011 Dec; 50(48):10499-507. PubMed ID: 22050556
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rearrangement of terminal amino acid residues in peptides by protease-catalyzed intramolecular transpeptidation.
    Fodor S; Zhang Z
    Anal Biochem; 2006 Sep; 356(2):282-90. PubMed ID: 16859627
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Extended cleavage specificity of mMCP-1, the major mucosal mast cell protease in mouse-high specificity indicates high substrate selectivity.
    Andersson MK; Pemberton AD; Miller HR; Hellman L
    Mol Immunol; 2008 May; 45(9):2548-58. PubMed ID: 18313755
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proteome-Derived Peptide Libraries for Deep Specificity Profiling of N-terminal Modification Reagents.
    Bridge HN; Weeks AM
    Curr Protoc; 2023 Jun; 3(6):e798. PubMed ID: 37283519
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reverse interactomics: decoding protein-protein interactions with combinatorial peptide libraries.
    Pei D; Wavreille AS
    Mol Biosyst; 2007 Aug; 3(8):536-41. PubMed ID: 17639128
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sequential peptide affinity purification system for the systematic isolation and identification of protein complexes from Escherichia coli.
    Babu M; Butland G; Pogoutse O; Li J; Greenblatt JF; Emili A
    Methods Mol Biol; 2009; 564():373-400. PubMed ID: 19544035
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mapping the human proteome for non-redundant peptide islands.
    Capone G; De Marinis A; Simone S; Kusalik A; Kanduc D
    Amino Acids; 2008 Jun; 35(1):209-16. PubMed ID: 17701099
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novel at the library.
    Yaffe MB
    Nat Methods; 2004 Oct; 1(1):13-4. PubMed ID: 15782146
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 36.