These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

707 related articles for article (PubMed ID: 18500335)

  • 21. mRNA-display-based selections for proteins with desired functions: a protease-substrate case study.
    Valencia CA; Cotten SW; Dong B; Liu R
    Biotechnol Prog; 2008; 24(3):561-9. PubMed ID: 18471027
    [TBL] [Abstract][Full Text] [Related]  

  • 22. PhosphoPOINT: a comprehensive human kinase interactome and phospho-protein database.
    Yang CY; Chang CH; Yu YL; Lin TC; Lee SA; Yen CC; Yang JM; Lai JM; Hong YR; Tseng TL; Chao KM; Huang CY
    Bioinformatics; 2008 Aug; 24(16):i14-20. PubMed ID: 18689816
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comprehensive and reliable phosphorylation site mapping of individual phosphoproteins by combination of multiple stage mass spectrometric analysis with a target-decoy database search.
    Han G; Ye M; Jiang X; Chen R; Ren J; Xue Y; Wang F; Song C; Yao X; Zou H
    Anal Chem; 2009 Jul; 81(14):5794-805. PubMed ID: 19522514
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High resolution analysis of snake venom metalloproteinase (SVMP) peptide bond cleavage specificity using proteome based peptide libraries and mass spectrometry.
    Paes Leme AF; Escalante T; Pereira JG; Oliveira AK; Sanchez EF; Gutiérrez JM; Serrano SM; Fox JW
    J Proteomics; 2011 Apr; 74(4):401-10. PubMed ID: 21156218
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proteomic techniques and activity-based probes for the system-wide study of proteolysis.
    auf dem Keller U; Schilling O
    Biochimie; 2010 Nov; 92(11):1705-14. PubMed ID: 20493233
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proteome-derived peptide library for the elucidation of the cleavage specificity of HF3, a snake venom metalloproteinase.
    Bertholim L; Zelanis A; Oliveira AK; Serrano SM
    Amino Acids; 2016 May; 48(5):1331-5. PubMed ID: 27020778
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Variable context Markov chains for HIV protease cleavage site prediction.
    Oğul H
    Biosystems; 2009 Jun; 96(3):246-50. PubMed ID: 19758550
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Activity based fingerprinting of proteases using FRET peptides.
    Sun H; Panicker RC; Yao SQ
    Biopolymers; 2007; 88(2):141-9. PubMed ID: 17206627
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of Protease Specificity by Combining Proteome-Derived Peptide Libraries and Quantitative Proteomics.
    Biniossek ML; Niemer M; Maksimchuk K; Mayer B; Fuchs J; Huesgen PF; McCafferty DG; Turk B; Fritz G; Mayer J; Haecker G; Mach L; Schilling O
    Mol Cell Proteomics; 2016 Jul; 15(7):2515-24. PubMed ID: 27122596
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Introducing the CPL/MUW proteome database: interpretation of human liver and liver cancer proteome profiles by referring to isolated primary cells.
    Wimmer H; Gundacker NC; Griss J; Haudek VJ; Stättner S; Mohr T; Zwickl H; Paulitschke V; Baron DM; Trittner W; Kubicek M; Bayer E; Slany A; Gerner C
    Electrophoresis; 2009 Jun; 30(12):2076-89. PubMed ID: 19582709
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Workflow for large scale detection and validation of peptide modifications by RPLC-LTQ-Orbitrap: application to the Arabidopsis thaliana leaf proteome and an online modified peptide library.
    Zybailov B; Sun Q; van Wijk KJ
    Anal Chem; 2009 Oct; 81(19):8015-24. PubMed ID: 19725545
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mapping protease substrates by using a biotinylated phage substrate library.
    Scholle MD; Kriplani U; Pabon A; Sishtla K; Glucksman MJ; Kay BK
    Chembiochem; 2006 May; 7(5):834-8. PubMed ID: 16628754
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Discovery of amino acid motifs for thrombin cleavage and validation using a model substrate.
    Ng NM; Pierce JD; Webb GI; Ratnikov BI; Wijeyewickrema LC; Duncan RC; Robertson AL; Bottomley SP; Boyd SE; Pike RN
    Biochemistry; 2011 Dec; 50(48):10499-507. PubMed ID: 22050556
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rearrangement of terminal amino acid residues in peptides by protease-catalyzed intramolecular transpeptidation.
    Fodor S; Zhang Z
    Anal Biochem; 2006 Sep; 356(2):282-90. PubMed ID: 16859627
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Extended cleavage specificity of mMCP-1, the major mucosal mast cell protease in mouse-high specificity indicates high substrate selectivity.
    Andersson MK; Pemberton AD; Miller HR; Hellman L
    Mol Immunol; 2008 May; 45(9):2548-58. PubMed ID: 18313755
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proteome-Derived Peptide Libraries for Deep Specificity Profiling of N-terminal Modification Reagents.
    Bridge HN; Weeks AM
    Curr Protoc; 2023 Jun; 3(6):e798. PubMed ID: 37283519
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reverse interactomics: decoding protein-protein interactions with combinatorial peptide libraries.
    Pei D; Wavreille AS
    Mol Biosyst; 2007 Aug; 3(8):536-41. PubMed ID: 17639128
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sequential peptide affinity purification system for the systematic isolation and identification of protein complexes from Escherichia coli.
    Babu M; Butland G; Pogoutse O; Li J; Greenblatt JF; Emili A
    Methods Mol Biol; 2009; 564():373-400. PubMed ID: 19544035
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mapping the human proteome for non-redundant peptide islands.
    Capone G; De Marinis A; Simone S; Kusalik A; Kanduc D
    Amino Acids; 2008 Jun; 35(1):209-16. PubMed ID: 17701099
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novel at the library.
    Yaffe MB
    Nat Methods; 2004 Oct; 1(1):13-4. PubMed ID: 15782146
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 36.