BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

707 related articles for article (PubMed ID: 18500335)

  • 41. A new school for screening.
    Jhoti H
    Nat Biotechnol; 2005 Feb; 23(2):184-6. PubMed ID: 15696146
    [No Abstract]   [Full Text] [Related]  

  • 42. The art of observing rare protein species in proteomes with peptide ligand libraries.
    Boschetti E; Righetti PG
    Proteomics; 2009 Mar; 9(6):1492-510. PubMed ID: 19235170
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Profiling Sequence Specificity of Proteolytic Activities Using Proteome-Derived Peptide Libraries.
    Demir F; Kuppusamy M; Perrar A; Huesgen PF
    Methods Mol Biol; 2022; 2447():159-174. PubMed ID: 35583780
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Relating protein pharmacology by ligand chemistry.
    Keiser MJ; Roth BL; Armbruster BN; Ernsberger P; Irwin JJ; Shoichet BK
    Nat Biotechnol; 2007 Feb; 25(2):197-206. PubMed ID: 17287757
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A family of phosphodiesterase inhibitors discovered by cocrystallography and scaffold-based drug design.
    Card GL; Blasdel L; England BP; Zhang C; Suzuki Y; Gillette S; Fong D; Ibrahim PN; Artis DR; Bollag G; Milburn MV; Kim SH; Schlessinger J; Zhang KY
    Nat Biotechnol; 2005 Feb; 23(2):201-7. PubMed ID: 15685167
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Matrin 3 is a Ca2+/calmodulin-binding protein cleaved by caspases.
    Valencia CA; Ju W; Liu R
    Biochem Biophys Res Commun; 2007 Sep; 361(2):281-6. PubMed ID: 17658460
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evaluation of the low-specificity protease elastase for large-scale phosphoproteome analysis.
    Wang B; Malik R; Nigg EA; Körner R
    Anal Chem; 2008 Dec; 80(24):9526-33. PubMed ID: 19007248
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An integrative approach for predicting interactions of protein regions.
    Schelhorn SE; Lengauer T; Albrecht M
    Bioinformatics; 2008 Aug; 24(16):i35-41. PubMed ID: 18689837
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparative conservation analysis of the human mitotic phosphoproteome.
    Malik R; Nigg EA; Körner R
    Bioinformatics; 2008 Jun; 24(12):1426-32. PubMed ID: 18426804
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Database searching and accounting of multiplexed precursor and product ion spectra from the data independent analysis of simple and complex peptide mixtures.
    Li GZ; Vissers JP; Silva JC; Golick D; Gorenstein MV; Geromanos SJ
    Proteomics; 2009 Mar; 9(6):1696-719. PubMed ID: 19294629
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A broad-spectrum fluorescence-based peptide library for the rapid identification of protease substrates.
    Thomas DA; Francis P; Smith C; Ratcliffe S; Ede NJ; Kay C; Wayne G; Martin SL; Moore K; Amour A; Hooper NM
    Proteomics; 2006 Apr; 6(7):2112-20. PubMed ID: 16479534
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Protease Specificity Profiling in a Pipet Tip Using "Charge-Synchronized" Proteome-Derived Peptide Libraries.
    Nguyen MTN; Shema G; Zahedi RP; Verhelst SHL
    J Proteome Res; 2018 May; 17(5):1923-1933. PubMed ID: 29664642
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification and relative quantification of native and proteolytically generated protein C-termini from complex proteomes: C-terminome analysis.
    Schilling O; Huesgen PF; Barré O; Overall CM
    Methods Mol Biol; 2011; 781():59-69. PubMed ID: 21877277
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Broad coverage identification of multiple proteolytic cleavage site sequences in complex high molecular weight proteins using quantitative proteomics as a complement to edman sequencing.
    Doucet A; Overall CM
    Mol Cell Proteomics; 2011 May; 10(5):M110.003533. PubMed ID: 20876890
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Protease substrate site predictors derived from machine learning on multilevel substrate phage display data.
    Chen CT; Yang EW; Hsu HJ; Sun YK; Hsu WL; Yang AS
    Bioinformatics; 2008 Dec; 24(23):2691-7. PubMed ID: 18974075
    [TBL] [Abstract][Full Text] [Related]  

  • 56. PoPS: a computational tool for modeling and predicting protease specificity.
    Boyd SE; Garcia de la Banda M; Pike RN; Whisstock JC; Rudy GB
    Proc IEEE Comput Syst Bioinform Conf; 2004; ():372-81. PubMed ID: 16448030
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Large-scale analysis of protein-protein interactions using cellulose-bound peptide arrays.
    Beutling U; Städing K; Stradal T; Frank R
    Adv Biochem Eng Biotechnol; 2008; 110():115-52. PubMed ID: 18418558
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mapping discontinuous protein-binding sites via structure-based peptide libraries: combining in silico and in vitro approaches.
    Jaeger IS; Kretzschmar I; Körner J; Weiser AA; Mahrenholz CC; Potty A; Kourentzi K; Willson RC; Volkmer R; Preissner R
    J Mol Recognit; 2013 Jan; 26(1):23-31. PubMed ID: 23280614
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hexapeptide combinatorial ligand libraries: the march for the detection of the low-abundance proteome continues.
    Boschetti E; Giorgio Righetti P
    Biotechniques; 2008 Apr; 44(5):663-5. PubMed ID: 18474042
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Domain Interaction Footprint: a multi-classification approach to predict domain-peptide interactions.
    Schillinger C; Boisguerin P; Krause G
    Bioinformatics; 2009 Jul; 25(13):1632-9. PubMed ID: 19376827
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 36.