BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 18500449)

  • 1. In vitro study investigating the mechanical properties of acrylic bone cement containing calcium carbonate nanoparticles.
    Hill J; Orr J; Dunne N
    J Mater Sci Mater Med; 2008 Nov; 19(11):3327-33. PubMed ID: 18500449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of the radiopacifier in an acrylic bone cement on its mechanical, thermal, and physical properties: barium sulfate-containing cement versus iodine-containing cement.
    Lewis G; van Hooy-Corstjens CS; Bhattaram A; Koole LH
    J Biomed Mater Res B Appl Biomater; 2005 Apr; 73(1):77-87. PubMed ID: 15786447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of the small-punch test as a technique for characterizing the mechanical properties of acrylic bone cement.
    Dunne NJ; Leonard D; Daly C; Buchanan FJ; Orr JF
    Proc Inst Mech Eng H; 2006 Jan; 220(1):11-21. PubMed ID: 16459442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Augmentation of acrylic bone cement with multiwall carbon nanotubes.
    Marrs B; Andrews R; Rantell T; Pienkowski D
    J Biomed Mater Res A; 2006 May; 77(2):269-76. PubMed ID: 16392130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of additive particles on mechanical, thermal, and cell functioning properties of poly(methyl methacrylate) cement.
    Khandaker M; Vaughan MB; Morris TL; White JJ; Meng Z
    Int J Nanomedicine; 2014; 9():2699-712. PubMed ID: 24920906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMP-modified PMMA bone cement with adapted mechanical and hardening properties for the use in cancellous bone augmentation.
    Boger A; Wheeler K; Montali A; Gruskin E
    J Biomed Mater Res B Appl Biomater; 2009 Aug; 90(2):760-6. PubMed ID: 19280644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reinforcement of bone cement using zirconia fibers with and without acrylic coating.
    Kotha S; Li C; Schmid S; Mason J
    J Biomed Mater Res A; 2009 Mar; 88(4):898-906. PubMed ID: 18384160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporation of chitosan/graphene oxide nanocomposite in to the PMMA bone cement: Physical, mechanical and biological evaluation.
    Tavakoli M; Bakhtiari SSE; Karbasi S
    Int J Biol Macromol; 2020 Apr; 149():783-793. PubMed ID: 32014476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of a bisphosphonate, disodium pamidronate, on the quasi-static flexural properties of Palacos R acrylic bone cement.
    Zenios M; Nokes L; Galasko CS
    J Biomed Mater Res B Appl Biomater; 2004 Nov; 71(2):322-6. PubMed ID: 15384075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of fatigue crack growth in acrylic bone cement using the acoustic emission technique.
    Roques A; Browne M; Thompson J; Rowland C; Taylor A
    Biomaterials; 2004 Feb; 25(5):769-78. PubMed ID: 14609665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physical and mechanical properties of PMMA bone cement reinforced with nano-sized titania fibers.
    Khaled SM; Charpentier PA; Rizkalla AS
    J Biomater Appl; 2011 Feb; 25(6):515-37. PubMed ID: 20207779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of oligo(trimethylene carbonate) addition on the stiffness of acrylic bone cement.
    Persson C; López A; Fathali H; Hoess A; Rojas R; Ott MK; Hilborn J; Engqvist H
    Biomatter; 2016; 6(1):e1133394. PubMed ID: 26727581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoparticulate fillers improve the mechanical strength of bone cement.
    Gomoll AH; Fitz W; Scott RD; Thornhill TS; Bellare A
    Acta Orthop; 2008 Jun; 79(3):421-7. PubMed ID: 18622848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a new composite PMMA-HA/Brushite bone cement for spinal augmentation.
    Aghyarian S; Rodriguez LC; Chari J; Bentley E; Kosmopoulos V; Lieberman IH; Rodrigues DC
    J Biomater Appl; 2014 Nov; 29(5):688-98. PubMed ID: 25085810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biaxial flexural modulus of antibiotic-impregnated orthopedic bone cement.
    Leone J; Johnson A; Ziada S; Hashemi A; Adili A; de Beer J
    J Biomed Mater Res B Appl Biomater; 2007 Oct; 83(1):97-104. PubMed ID: 17323315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Incorporation of large amounts of gentamicin sulphate into acrylic bone cement: effect on handling and mechanical properties, antibiotic release, and biofilm formation.
    Dunne NJ; Hill J; McAfee P; Kirkpatrick R; Patrick S; Tunney M
    Proc Inst Mech Eng H; 2008 Apr; 222(3):355-65. PubMed ID: 18491704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Viscoelastic behaviour of acrylic bone cements.
    Yetkinler DN; Litsky AS
    Biomaterials; 1998 Sep; 19(17):1551-9. PubMed ID: 9830980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow characteristics of curing polymethyl methacrylate bone cement.
    Dunne NJ; Orr JF
    Proc Inst Mech Eng H; 1998; 212(3):199-207. PubMed ID: 9695639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of multiwall carbon nanotube functionality and loading on mechanical properties of PMMA/MWCNT bone cements.
    Ormsby R; McNally T; Mitchell C; Dunne N
    J Mater Sci Mater Med; 2010 Aug; 21(8):2287-92. PubMed ID: 20091100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental and computational models to investigate the effect of adhesion on the mechanical properties of bone-cement composites.
    Helgason B; Stirnimann P; Widmer R; Ferguson SJ
    J Biomed Mater Res B Appl Biomater; 2011 Oct; 99(1):191-8. PubMed ID: 21714083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.