These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 18500554)

  • 1. Modulating the functional performance of bioengineered heart muscle using growth factor stimulation.
    Huang YC; Khait L; Birla RK
    Ann Biomed Eng; 2008 Aug; 36(8):1372-82. PubMed ID: 18500554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contractile three-dimensional bioengineered heart muscle for myocardial regeneration.
    Huang YC; Khait L; Birla RK
    J Biomed Mater Res A; 2007 Mar; 80(3):719-31. PubMed ID: 17154158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a novel bioreactor for the mechanical loading of tissue-engineered heart muscle.
    Birla RK; Huang YC; Dennis RG
    Tissue Eng; 2007 Sep; 13(9):2239-48. PubMed ID: 17590151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and fabrication of heart muscle using scaffold-based tissue engineering.
    Blan NR; Birla RK
    J Biomed Mater Res A; 2008 Jul; 86(1):195-208. PubMed ID: 17972281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo conditioning of tissue-engineered heart muscle improves contractile performance.
    Birla RK; Borschel GH; Dennis RG
    Artif Organs; 2005 Nov; 29(11):866-75. PubMed ID: 16266299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Force characteristics of in vivo tissue-engineered myocardial constructs using varying cell seeding densities.
    Birla R; Dhawan V; Huang YC; Lytle I; Tiranathanagul K; Brown D
    Artif Organs; 2008 Sep; 32(9):684-91. PubMed ID: 18684210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cardiac cells implanted into a cylindrical, vascularized chamber in vivo: pressure generation and morphology.
    Birla RK; Dhawan V; Dow DE; Huang YC; Brown DL
    Biotechnol Lett; 2009 Feb; 31(2):191-201. PubMed ID: 18854950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a microperfusion system for the culture of bioengineered heart muscle.
    Hecker L; Khait L; Radnoti D; Birla R
    ASAIO J; 2008; 54(3):284-94. PubMed ID: 18496279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid formation of functional muscle in vitro using fibrin gels.
    Huang YC; Dennis RG; Larkin L; Baar K
    J Appl Physiol (1985); 2005 Feb; 98(2):706-13. PubMed ID: 15475606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct cell-to-fiber junctions are critical for the establishment of cardiotypical phenotype in a 3D bioartificial environment.
    Kofidis T; Balsam L; de Bruin J; Robbins RC
    Med Eng Phys; 2004 Mar; 26(2):157-63. PubMed ID: 15036183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recombinant human growth hormone secreted from tissue-engineered bioartificial muscle improves left ventricular function in rat with acute myocardial infarction.
    Rong SL; Wang YJ; Wang XL; Lu YX; Chang C; Wang FZ; Liu QY; Liu XY; Gao YZ; Mi SH
    Chin Med J (Engl); 2009 Oct; 122(19):2352-9. PubMed ID: 20079139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic culture yields engineered myocardium with near-adult functional output.
    Jackman CP; Carlson AL; Bursac N
    Biomaterials; 2016 Dec; 111():66-79. PubMed ID: 27723557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in gene expression during the formation of bioengineered heart muscle.
    Khait L; Birla RK
    Artif Organs; 2009 Jan; 33(1):3-15. PubMed ID: 19178436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional and developmental properties of human embryonic stem cells-derived cardiomyocytes.
    Binah O; Dolnikov K; Sadan O; Shilkrut M; Zeevi-Levin N; Amit M; Danon A; Itskovitz-Eldor J
    J Electrocardiol; 2007; 40(6 Suppl):S192-6. PubMed ID: 17993321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of thyroid hormone on the contractility of self-organized heart muscle.
    Khait L; Birla RK
    In Vitro Cell Dev Biol Anim; 2008; 44(7):204-13. PubMed ID: 18528734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of ECM proteins and their analogs on cells cultured on 2-D hydrogels for cardiac muscle tissue engineering.
    LaNasa SM; Bryant SJ
    Acta Biomater; 2009 Oct; 5(8):2929-38. PubMed ID: 19457460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recombinant proteins secreted from tissue-engineered bioartificial muscle improve cardiac dysfunction and suppress cardiomyocyte apoptosis in rats with heart failure.
    Rong SL; Wang YJ; Wang XL; Lu YX; Wu Y; Liu QY; Mi SH; Xu YL
    Chin Med J (Engl); 2010 Dec; 123(24):3626-2633. PubMed ID: 22166642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a biological ventricular assist device: preliminary data from a small animal model.
    Yildirim Y; Naito H; DidiƩ M; Karikkineth BC; Biermann D; Eschenhagen T; Zimmermann WH
    Circulation; 2007 Sep; 116(11 Suppl):I16-23. PubMed ID: 17846298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of streptomycin on the active force of bioengineered heart muscle in response to controlled stretch.
    Birla RK; Huang YC; Dennis RG
    In Vitro Cell Dev Biol Anim; 2008; 44(7):253-60. PubMed ID: 18568374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micro-perfusion for cardiac tissue engineering: development of a bench-top system for the culture of primary cardiac cells.
    Khait L; Hecker L; Radnoti D; Birla RK
    Ann Biomed Eng; 2008 May; 36(5):713-25. PubMed ID: 18274906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.