BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 18500587)

  • 1. Production of L(+)-lactic acid using acid-adapted precultures of Rhizopus arrhizus in a stirred tank reactor.
    Zhang ZY; Jin B; Kelly JM
    Appl Biochem Biotechnol; 2008 Jun; 149(3):265-76. PubMed ID: 18500587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of l(+)-lactic acid production using acid-adapted precultures of Rhizopus arrhizus in a bubble column reactor.
    Zhang ZY; Jin B; Kelly JM
    J Biosci Bioeng; 2009 Oct; 108(4):344-7. PubMed ID: 19716526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of L(+)-lactic acid from glucose and starch by immobilized cells of Rhizopus oryzae in a rotating fibrous bed bioreactor.
    Tay A; Yang ST
    Biotechnol Bioeng; 2002 Oct; 80(1):1-12. PubMed ID: 12209781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct fermentation of potato starch wastewater to lactic acid by Rhizopus oryzae and Rhizopus arrhizus.
    Huang LP; Jin B; Lant P
    Bioprocess Biosyst Eng; 2005 Jul; 27(4):229-38. PubMed ID: 15947951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Repeated intermittent L-lactic acid fermentation technology by self-immobilized Rhizopus oryzae].
    Jiang S; Zheng Z; Zhu Y; Wu X; Pan L; Luo S; Du W
    Sheng Wu Gong Cheng Xue Bao; 2008 Oct; 24(10):1729-33. PubMed ID: 19149184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient production of L-(+)-lactic acid using mycelial cotton-like flocs of Rhizopus oryzae in an air-lift bioreactor.
    Park EY; Kosakai Y; Okabe M
    Biotechnol Prog; 1998; 14(5):699-704. PubMed ID: 9758658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved oxygen transfer and increased L-lactic acid production by morphology control of Rhizopus oryzae in a static bed bioreactor.
    Chotisubha-anandha N; Thitiprasert S; Tolieng V; Thongchul N
    Bioprocess Biosyst Eng; 2011 Feb; 34(2):163-72. PubMed ID: 20703501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-production of lactic acid and chitin using a pelletized filamentous fungus Rhizopus oryzae cultured on cull potatoes and glucose.
    Liu Y; Liao W; Chen S
    J Appl Microbiol; 2008 Nov; 105(5):1521-8. PubMed ID: 19146489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioconversion of waste office paper to L(+)-lactic acid by the filamentous fungus Rhizopus oryzae.
    Park EY; Anh PN; Okuda N
    Bioresour Technol; 2004 May; 93(1):77-83. PubMed ID: 14987724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of L-(+)-lactic acid production using pelletized filamentous Rhizopus oryzae NRRL 395.
    Liu Y; Liao W; Liu C; Chen S
    Appl Biochem Biotechnol; 2006 Mar; 131(1-3):844-53. PubMed ID: 18563658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of L-(+)-lactic acid production using pelletized filamentous Rhizopus oryzae NRRL 395.
    Liu Y; Liao W; Liu C; Chen S
    Appl Biochem Biotechnol; 2006; 129-132():844-53. PubMed ID: 16915692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studying pellet formation of a filamentous fungus Rhizopus oryzae to enhance organic acid production.
    Liao W; Liu Y; Chen S
    Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):689-701. PubMed ID: 18478426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel honeycomb matrix for cell immobilization to enhance lactic acid production by Rhizopus oryzae.
    Wang Z; Wang Y; Yang ST; Wang R; Ren H
    Bioresour Technol; 2010 Jul; 101(14):5557-64. PubMed ID: 20219359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of L-lactic acid by Rhizopus oryzae in a bubble column fermenter.
    Du J; Cao N; Gong CS; Tsao GT
    Appl Biochem Biotechnol; 1998; 70-72():323-9. PubMed ID: 18576001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of lactic acid production by pellet-form Rhizopus oryzae in 3-L airlift bioreactor using response surface methodology.
    Maneeboon T; Vanichsriratana W; Pomchaitaward C; Kitpreechavanich V
    Appl Biochem Biotechnol; 2010 May; 161(1-8):137-46. PubMed ID: 20091139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of lactic acid and fungal biomass by Rhizopus fungi from food processing waste streams.
    Jin B; Yin P; Ma Y; Zhao L
    J Ind Microbiol Biotechnol; 2005 Dec; 32(11-12):678-86. PubMed ID: 16208461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of L+-lactic acid production using mycelial flocs of Rhizopus oryzae.
    Kosakai Y; Soo Park Y; Okabe M
    Biotechnol Bioeng; 1997 Aug; 55(3):461-70. PubMed ID: 18636511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative characterization of L-lactic acid-producing thermotolerant Rhizopus fungi.
    Kitpreechavanich V; Maneeboon T; Kayano Y; Sakai K
    J Biosci Bioeng; 2008 Dec; 106(6):541-6. PubMed ID: 19134548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lactic acid fermentation of potato pulp by the fungus Rhizopus oryzae.
    Oda Y; Saito K; Yamauchi H; Mori M
    Curr Microbiol; 2002 Jul; 45(1):1-4. PubMed ID: 12029519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scale-up of L-lactic acid production by mutant strain Rhizopus sp. MK-96-1196 from 0.003 m3 to 5 m3 in airlift bioreactors.
    Liu T; Miura S; Yaguchi M; Arimura T; Park EY; Okabe M
    J Biosci Bioeng; 2006 Jan; 101(1):9-12. PubMed ID: 16503284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.