BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 18500587)

  • 41. Selection of Rhizopus strains for L(+)-lactic acid and gamma-linolenic acid production.
    Kristofíková L; Rosenberg M; Vlnová A; Sajbidor J; Certík M
    Folia Microbiol (Praha); 1991; 36(5):451-5. PubMed ID: 1668279
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Rhizopus oryzae fungus cells producing L(+)-lactic acid: kinetic and metabolic parameters of free and PVA-cryogel-entrapped mycelium.
    Efremenko E; Spiricheva O; Varfolomeyev S; Lozinsky V
    Appl Microbiol Biotechnol; 2006 Sep; 72(3):480-5. PubMed ID: 16523285
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Effect of ZnSO4 on L-lactic acid production by Rhizopus oryzae].
    Ge C; Pan R; Zhang J; Cai J; Yu Z
    Wei Sheng Wu Xue Bao; 2013 May; 53(5):515-20. PubMed ID: 23957157
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Lactic acid production by loofah-immobilized Rhizopus oryzae through one-step fermentation process using starch substrate.
    Shahri SZ; Vahabzadeh F; Mogharei A
    Bioprocess Biosyst Eng; 2020 Feb; 43(2):333-345. PubMed ID: 31686196
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Gentamicin production by Micromonospora echinospora (Me- 22) in stirred tank reactor: effect of various parameters.
    Meenavilli H; Potumarthi R; Jetty A
    J Basic Microbiol; 2008 Feb; 48(1):53-8. PubMed ID: 18247396
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High-efficiency l-lactic acid production by Rhizopus oryzae using a novel modified one-step fermentation strategy.
    Fu YQ; Yin LF; Zhu HY; Jiang R
    Bioresour Technol; 2016 Oct; 218():410-7. PubMed ID: 27393831
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Production of exopolysaccharides by submerged culture of an enthomopathogenic fungus, Paecilomyces tenuipes C240 in stirred-tank and airlift reactors.
    Xu CP; Kim SW; Hwang HJ; Yun JW
    Bioresour Technol; 2006 Mar; 97(5):770-7. PubMed ID: 15951166
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Production of fumaric acid by immobilized Rhizopus arrhizus RH 7-13-9# on loofah fiber in a stirred-tank reactor.
    Liu H; Zhao S; Jin Y; Yue X; Deng L; Wang F; Tan T
    Bioresour Technol; 2017 Nov; 244(Pt 1):929-933. PubMed ID: 28847082
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Development of an oat-based biorefinery for the production of L(+)-lactic acid by Rhizopus oryzae and various value-added coproducts.
    Koutinas AA; Malbranque F; Wang R; Campbell GM; Webb C
    J Agric Food Chem; 2007 Mar; 55(5):1755-61. PubMed ID: 17288441
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Improvement in lactic acid production from starch using alpha-amylase-secreting Lactococcus lactis cells adapted to maltose or starch.
    Okano K; Kimura S; Narita J; Fukuda H; Kondo A
    Appl Microbiol Biotechnol; 2007 Jul; 75(5):1007-13. PubMed ID: 17384945
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Development and optimization of a culture medium for L-lactic acid production by Rhizopus oryzae using crude protein from dairy manure as a nitrogen source.
    Yao W; Zhu J; Sun B; Miller C
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Oct; 44(12):1306-13. PubMed ID: 19847719
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Direct lactic acid fermentation: focus on simultaneous saccharification and lactic acid production.
    John RP; G S A; Nampoothiri KM; Pandey A
    Biotechnol Adv; 2009; 27(2):145-52. PubMed ID: 19013227
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Lactic acid production by Lactobacillus delbrueckii in a dual reactor system using packed bed biofilm reactor.
    Rangaswamy V; Ramakrishna SV
    Lett Appl Microbiol; 2008 Jun; 46(6):661-6. PubMed ID: 18384524
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enhanced fumaric acid production from brewery wastewater and insight into the morphology of Rhizopus oryzae 1526.
    Das RK; Brar SK
    Appl Biochem Biotechnol; 2014 Mar; 172(6):2974-88. PubMed ID: 24469587
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Production of lactic acid from paper sludge using acid-tolerant, thermophilic Bacillus coagulan strains.
    Budhavaram NK; Fan Z
    Bioresour Technol; 2009 Dec; 100(23):5966-72. PubMed ID: 19577925
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bioconversion of waste cooking oil glycerol from cabbage extract to lactic acid by Rhizopus microsporus.
    Yuwa-Amornpitak T; Chookietwatana K
    Braz J Microbiol; 2018 Nov; 49 Suppl 1(Suppl 1):178-184. PubMed ID: 30166270
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mass production of spores of lactic acid-producing Rhizopus oryzae NBRC 5384 on agar plate.
    Yamane T; Tanaka R
    Biotechnol Prog; 2013; 29(4):876-81. PubMed ID: 23658025
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enhancement and modeling of microparticle-added Rhizopus oryzae lactic acid production.
    Coban HB; Demirci A
    Bioprocess Biosyst Eng; 2016 Feb; 39(2):323-30. PubMed ID: 26658984
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Genome shuffling of Lactobacillus delbrueckii mutant and Bacillus amyloliquefaciens through protoplasmic fusion for L-lactic acid production from starchy wastes.
    John RP; Gangadharan D; Madhavan Nampoothiri K
    Bioresour Technol; 2008 Nov; 99(17):8008-15. PubMed ID: 18482834
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Production of L-lactic acid and oligomeric compounds from apple pomace by simultaneous saccharification and fermentation: a response surface methodology assessment.
    Gullón B; Garrote G; Alonso JL; Parajó JC
    J Agric Food Chem; 2007 Jul; 55(14):5580-7. PubMed ID: 17567032
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.