BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 18500665)

  • 1. Variation of 4,5,6,7-tetrachlorophthalide in water after aerial application to rice cultivation area.
    Maeda T; Iwashita M; Hori T; Asada T; Oikawa K; Kawata K
    Bull Environ Contam Toxicol; 2008 May; 80(5):399-402. PubMed ID: 18500665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decrease of 4,5,6,7-tetrachlorophthalide in paddy field soil after aerial application.
    Iwashita M; Maeda T; Hori T; Asada T; Oikawa K; Kawata K
    Bull Environ Contam Toxicol; 2008 Oct; 81(4):383-6. PubMed ID: 18670728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Runoff of aerially applied phthalide from paddy fields.
    Shiota N; Hori T; Nissato K; Asada T; Oikawa K; Kawata K
    Bull Environ Contam Toxicol; 2006 Oct; 77(4):508-15. PubMed ID: 17123009
    [No Abstract]   [Full Text] [Related]  

  • 4. Pesticide residues in coastal waters affected by rice paddy effluents temporarily stored in a wastewater reservoir in southern Japan.
    Añasco NC; Koyama J; Uno S
    Arch Environ Contam Toxicol; 2010 Feb; 58(2):352-60. PubMed ID: 19609592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alternative water management for controlling simetryn and thiobencarb runoff from paddy fields.
    Phong TK; Nguyen MH; Komany S; Vu SH; Watanabe H
    Bull Environ Contam Toxicol; 2006 Sep; 77(3):375-82. PubMed ID: 17033864
    [No Abstract]   [Full Text] [Related]  

  • 6. A study on pesticide runoff from paddy fields to a river in rural region--1: field survey of pesticide runoff in the Kozakura River, Japan.
    Nakano Y; Miyazaki A; Yoshida T; Ono K; Inoue T
    Water Res; 2004 Jul; 38(13):3017-22. PubMed ID: 15261539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Behavior of bromobutide in paddy water and soil after application.
    Morohashi M; Nagasawa S; Enya N; Suzuki K; Kose T; Kawata K
    Bull Environ Contam Toxicol; 2012 Apr; 88(4):521-5. PubMed ID: 22297629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study on pesticide runoff from paddy fields to a river in rural region--2: development and application of a mathematical model.
    Nakano Y; Yoshida T; Inoue T
    Water Res; 2004 Jul; 38(13):3023-30. PubMed ID: 15261540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Daily variation of pesticides in surface water of a small river flowing through paddy field area.
    Tanabe A; Kawata K
    Bull Environ Contam Toxicol; 2009 Jun; 82(6):705-10. PubMed ID: 19290454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exposure risk assessment and evaluation of the best management practice for controlling pesticide runoff from paddy fields. Part 1: Paddy watershed monitoring.
    Vu SH; Ishihara S; Watanabe H
    Pest Manag Sci; 2006 Dec; 62(12):1193-206. PubMed ID: 17099930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The potential of pesticides to contaminate the groundwater resources of the Axios river basin. Part II. Monitoring study in the south part of the basin.
    Papadopoulou-Mourkidou E; Karpouzas DG; Patsias J; Kotopoulou A; Milothridou A; Kintzikoglou K; Vlachou P
    Sci Total Environ; 2004 Apr; 321(1-3):147-64. PubMed ID: 15050392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Runoff of pesticides from rice fields in the Ile de Camargue (Rhône river delta, France): field study and modeling.
    Comoretto L; Arfib B; Talva R; Chauvelon P; Pichaud M; Chiron S; Höhener P
    Environ Pollut; 2008 Feb; 151(3):486-93. PubMed ID: 17562351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissipation of epoxiconazole in the paddy field under subtropical conditions of Taiwan.
    Lin HT; Wong SS; Li GC
    J Environ Sci Health B; 2001 Jul; 36(4):409-20. PubMed ID: 11495019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Residues and dynamics of probenazole in rice field ecosystem.
    Yi X; Lu Y
    Chemosphere; 2006 Oct; 65(4):639-43. PubMed ID: 16529792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring tricyclazole residues in rice paddy watersheds.
    Padovani L; Capri E; Padovani C; Puglisi E; Trevisan M
    Chemosphere; 2006 Jan; 62(2):303-14. PubMed ID: 15996714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of mefenacet concentrations in paddy fields by an improved PCPF-1 model.
    Watanabe H; Takagi K; Vu SH
    Pest Manag Sci; 2006 Jan; 62(1):20-9. PubMed ID: 16261540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Residues of the fungicide epoxiconazole in rice and paddy in the Chinese field ecosystem.
    Yan B; Ye F; Gao D
    Pest Manag Sci; 2015 Jan; 71(1):65-71. PubMed ID: 24550150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Behavior of herbicide pyrazolynate and its hydrolysate in paddy fields after application.
    Kubo T; Ohno M; Nagasawa S; Kose T; Kawata K
    Bull Environ Contam Toxicol; 2012 Nov; 89(5):985-9. PubMed ID: 22914901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monitoring of selected pesticides residue levels in water samples of paddy fields and removal of cypermethrin and chlorpyrifos residues from water using rice bran.
    Bhattacharjee S; Fakhruddin AN; Chowdhury MA; Rahman MA; Alam MK
    Bull Environ Contam Toxicol; 2012 Aug; 89(2):348-53. PubMed ID: 22627618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Runoff and degradation of aerially applied dinotefuran in paddy fields and river.
    Yokoyama S; Ito M; Nagasawa S; Morohashi M; Ohno M; Todate Y; Kose T; Kawata K
    Bull Environ Contam Toxicol; 2015 Jun; 94(6):796-800. PubMed ID: 25917847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.