BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 18500800)

  • 1. Synthetic control of the pore dimension and surface area in conjugated microporous polymer and copolymer networks.
    Jiang JX; Su F; Trewin A; Wood CD; Niu H; Jones JT; Khimyak YZ; Cooper AI
    J Am Chem Soc; 2008 Jun; 130(24):7710-20. PubMed ID: 18500800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Copper-Free Sonogashira Coupling for High-Surface-Area Conjugated Microporous Poly(aryleneethynylene) Networks.
    Trunk M; Herrmann A; Bildirir H; Yassin A; Schmidt J; Thomas A
    Chemistry; 2016 May; 22(21):7179-83. PubMed ID: 27080951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From microporous regular frameworks to mesoporous materials with ultrahigh surface area: dynamic reorganization of porous polymer networks.
    Kuhn P; Forget A; Su D; Thomas A; Antonietti M
    J Am Chem Soc; 2008 Oct; 130(40):13333-7. PubMed ID: 18788810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High surface area amorphous microporous poly(aryleneethynylene) networks using tetrahedral carbon- and silicon-centred monomers.
    Stöckel E; Wu X; Trewin A; Wood CD; Clowes R; Campbell NL; Jones JT; Khimyak YZ; Adams DJ; Cooper AI
    Chem Commun (Camb); 2009 Jan; (2):212-4. PubMed ID: 19099072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exceptionally Stable Microporous Organic Frameworks with Rigid Building Units for Efficient Small Gas Adsorption and Separation.
    Wen W; Shuttleworth PS; Yue H; Fernández-Blázquez JP; Guo J
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):7548-7556. PubMed ID: 31967780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalyst-free preparation of melamine-based microporous polymer networks through Schiff base chemistry.
    Schwab MG; Fassbender B; Spiess HW; Thomas A; Feng X; Müllen K
    J Am Chem Soc; 2009 Jun; 131(21):7216-7. PubMed ID: 19469570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid porous materials with high surface area derived from bromophenylethenyl-functionalized cubic siloxane-based building units.
    Chaikittisilp W; Sugawara A; Shimojima A; Okubo T
    Chemistry; 2010 May; 16(20):6006-14. PubMed ID: 20391584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the nature of the adsorbed hydrogen phase in microporous metal-organic frameworks at supercritical temperatures.
    Poirier E; Dailly A
    Langmuir; 2009 Oct; 25(20):12169-76. PubMed ID: 19775144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micropore analysis of polymer networks by gas sorption and 129Xe NMR spectroscopy: toward a better understanding of intrinsic microporosity.
    Weber J; Schmidt J; Thomas A; Böhlmann W
    Langmuir; 2010 Oct; 26(19):15650-6. PubMed ID: 20804192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of Thermal, Hydrothermal, and Acid-Base Treatments on Structural Stability and Surface Properties of Macro-, Meso-, and Microporous Carbons.
    Akolekar DB; Bhargava SK
    J Colloid Interface Sci; 1999 Aug; 216(2):309-319. PubMed ID: 10421739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrogen-containing microporous conjugated polymers via carbazole-based oxidative coupling polymerization: preparation, porosity, and gas uptake.
    Chen Q; Liu DP; Luo M; Feng LJ; Zhao YC; Han BH
    Small; 2014 Jan; 10(2):308-15. PubMed ID: 23913850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A tetrathiafulvalene (TTF)-conjugated microporous polymer network.
    Bildirir H; Paraknowitsch JP; Thomas A
    Chemistry; 2014 Jul; 20(31):9543-8. PubMed ID: 24962986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microporous Polymer Networks for Carbon Capture Applications.
    Lopez-Iglesias B; Suárez-García F; Aguilar-Lugo C; González Ortega A; Bartolomé C; Martínez-Ilarduya JM; de la Campa JG; Lozano ÁE; Álvarez C
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):26195-26205. PubMed ID: 30001102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High surface area microporous carbon materials for cryogenic hydrogen storage synthesized using new template-based and activation-based approaches.
    Meisner GP; Hu Q
    Nanotechnology; 2009 May; 20(20):204023. PubMed ID: 19420671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applicability of the BET method for determining surface areas of microporous metal-organic frameworks.
    Walton KS; Snurr RQ
    J Am Chem Soc; 2007 Jul; 129(27):8552-6. PubMed ID: 17580944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties.
    Banerjee R; Furukawa H; Britt D; Knobler C; O'Keeffe M; Yaghi OM
    J Am Chem Soc; 2009 Mar; 131(11):3875-7. PubMed ID: 19292488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coordination copolymerization mediated by Zn4O(CO2R)6 metal clusters: a balancing act between statistics and geometry.
    Koh K; Wong-Foy AG; Matzger AJ
    J Am Chem Soc; 2010 Oct; 132(42):15005-10. PubMed ID: 20925322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The potential of organic polymer-based hydrogen storage materials.
    Budd PM; Butler A; Selbie J; Mahmood K; McKeown NB; Ghanem B; Msayib K; Book D; Walton A
    Phys Chem Chem Phys; 2007 Apr; 9(15):1802-8. PubMed ID: 17415491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematic functionalization of a metal-organic framework via a postsynthetic modification approach.
    Tanabe KK; Wang Z; Cohen SM
    J Am Chem Soc; 2008 Jul; 130(26):8508-17. PubMed ID: 18540671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microporous polyimide networks with large surface areas and their hydrogen storage properties.
    Wang Z; Zhang B; Yu H; Sun L; Jiao C; Liu W
    Chem Commun (Camb); 2010 Nov; 46(41):7730-2. PubMed ID: 20852805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.