These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 18500877)

  • 1. Can the dodecahedral water cluster naturally form in methane aqueous solutions? A molecular dynamics study on the hydrate nucleation mechanisms.
    Guo GJ; Zhang YG; Li M; Wu CH
    J Chem Phys; 2008 May; 128(19):194504. PubMed ID: 18500877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Why can water cages adsorb aqueous methane? A potential of mean force calculation on hydrate nucleation mechanisms.
    Guo GJ; Li M; Zhang YG; Wu CH
    Phys Chem Chem Phys; 2009 Nov; 11(44):10427-37. PubMed ID: 19890529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lifetimes of cagelike water clusters immersed in bulk liquid water: a molecular dynamics study on gas hydrate nucleation mechanisms.
    Guo GJ; Zhang YG; Zhao YJ; Refson K; Shan GH
    J Chem Phys; 2004 Jul; 121(3):1542-7. PubMed ID: 15260700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of the water/methane interface on methane hydrate cages: the potential of mean force and cage lifetimes.
    Mastny EA; Miller CA; de Pablo JJ
    J Chem Phys; 2008 Jul; 129(3):034701. PubMed ID: 18647032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solubility of aqueous methane under metastable conditions: implications for gas hydrate nucleation.
    Guo GJ; Rodger PM
    J Phys Chem B; 2013 May; 117(21):6498-504. PubMed ID: 23639139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterogeneous crystal growth of methane hydrate on its sII [001] crystallographic face.
    Vatamanu J; Kusalik PG
    J Phys Chem B; 2008 Feb; 112(8):2399-404. PubMed ID: 18247598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using the face-saturated incomplete cage analysis to quantify the cage compositions and cage linking structures of amorphous phase hydrates.
    Guo GJ; Zhang YG; Liu CJ; Li KH
    Phys Chem Chem Phys; 2011 Jul; 13(25):12048-57. PubMed ID: 21614345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A methane-water model for coarse-grained simulations of solutions and clathrate hydrates.
    Jacobson LC; Molinero V
    J Phys Chem B; 2010 Jun; 114(21):7302-11. PubMed ID: 20462253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microsecond simulations of spontaneous methane hydrate nucleation and growth.
    Walsh MR; Koh CA; Sloan ED; Sum AK; Wu DT
    Science; 2009 Nov; 326(5956):1095-8. PubMed ID: 19815725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics study of structure H clathrate hydrates of methane and large guest molecules.
    Susilo R; Alavi S; Ripmeester JA; Englezos P
    J Chem Phys; 2008 May; 128(19):194505. PubMed ID: 18500878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The growth of structure I methane hydrate from molecular dynamics simulations.
    Tung YT; Chen LJ; Chen YP; Lin ST
    J Phys Chem B; 2010 Aug; 114(33):10804-13. PubMed ID: 20669917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gas hydrate nucleation and cage formation at a water/methane interface.
    Hawtin RW; Quigley D; Rodger PM
    Phys Chem Chem Phys; 2008 Aug; 10(32):4853-64. PubMed ID: 18688529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbohydrate clustering in aqueous solutions and the dynamics of confined water.
    Sonoda MT; Skaf MS
    J Phys Chem B; 2007 Oct; 111(41):11948-56. PubMed ID: 17887790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleation pathways of clathrate hydrates: effect of guest size and solubility.
    Jacobson LC; Hujo W; Molinero V
    J Phys Chem B; 2010 Nov; 114(43):13796-807. PubMed ID: 20931990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonequilibrium adiabatic molecular dynamics simulations of methane clathrate hydrate decomposition.
    Alavi S; Ripmeester JA
    J Chem Phys; 2010 Apr; 132(14):144703. PubMed ID: 20406006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen-bonding alcohol-water interactions in binary ethanol, 1-propanol, and 2-propanol+methane structure II clathrate hydrates.
    Alavi S; Takeya S; Ohmura R; Woo TK; Ripmeester JA
    J Chem Phys; 2010 Aug; 133(7):074505. PubMed ID: 20726650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The cages, dynamics, and structuring of incipient methane clathrate hydrates.
    Walsh MR; Rainey JD; Lafond PG; Park DH; Beckham GT; Jones MD; Lee KH; Koh CA; Sloan ED; Wu DT; Sum AK
    Phys Chem Chem Phys; 2011 Nov; 13(44):19951-9. PubMed ID: 21997437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interfacial properties of methane/aqueous VC-713 solution under hydrate formation conditions.
    Peng BZ; Sun CY; Liu P; Liu YT; Chen J; Chen GJ
    J Colloid Interface Sci; 2009 Aug; 336(2):738-42. PubMed ID: 19447402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics study on the growth of structure I methane hydrate in aqueous solution of sodium chloride.
    Tung YT; Chen LJ; Chen YP; Lin ST
    J Phys Chem B; 2012 Dec; 116(48):14115-25. PubMed ID: 23137227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A note on transformation between clathrate hydrate structures I and II.
    Yoshioki S
    J Mol Graph Model; 2010 Sep; 29(2):290-4. PubMed ID: 20646941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.