These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 18501407)

  • 1. Use of electrochemical technology to increase the quality of the effluents of bio-oxidation processes. A case studied.
    Cañizares P; Beteta A; Sáez C; Rodríguez L; Rodrigo MA
    Chemosphere; 2008 Jul; 72(7):1080-5. PubMed ID: 18501407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Treatment of door-manufacturing factories wastewaters using CDEO and other AOPs: a comparison.
    Beteta A; Cañizares P; Rodrigo MA; Rodríguez L; Sáez C
    J Hazard Mater; 2009 Aug; 168(1):358-63. PubMed ID: 19285804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical treatment of the effluent of a fine chemical manufacturing plant.
    Cañizares P; Paz R; Lobato J; Sáez C; Rodrigo MA
    J Hazard Mater; 2006 Nov; 138(1):173-81. PubMed ID: 16806682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidation of enrofloxacin with conductive-diamond electrochemical oxidation, ozonation and Fenton oxidation: a comparison.
    Guinea E; Brillas E; Centellas F; Cañizares P; Rodrigo MA; Sáez C
    Water Res; 2009 May; 43(8):2131-8. PubMed ID: 19282017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison between conductive-diamond electrochemical oxidation and other advanced oxidation processes for the treatment of synthetic melanoidins.
    Cañizares P; Hernández-Ortega M; Rodrigo MA; Barrera-Díaz CE; Roa-Morales G; Sáez C
    J Hazard Mater; 2009 May; 164(1):120-5. PubMed ID: 18789836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical treatment of aqueous wastes containing pyrogallol by BDD-anodic oxidation.
    Nasr B; Hsen T; Abdellatif G
    J Environ Manage; 2009 Jan; 90(1):523-30. PubMed ID: 18336990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of Doehlert matrix to determine the optimal conditions of electrochemical treatment of tannery effluents.
    Hammami S; Ouejhani A; Bellakhal N; Dachraoui M
    J Hazard Mater; 2009 Apr; 163(1):251-8. PubMed ID: 18755536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical treatment of the pollutants generated in an ink-manufacturing process.
    Cañizares P; Louhichi B; Gadri A; Nasr B; Paz R; Rodrigo MA; Saez C
    J Hazard Mater; 2007 Jul; 146(3):552-7. PubMed ID: 17532123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Treatment of real effluents from the pharmaceutical industry: A comparison between Fenton oxidation and conductive-diamond electro-oxidation.
    Pérez JF; Llanos J; Sáez C; López C; Cañizares P; Rodrigo MA
    J Environ Manage; 2017 Jun; 195(Pt 2):216-223. PubMed ID: 27530074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Costs of the electrochemical oxidation of wastewaters: a comparison with ozonation and Fenton oxidation processes.
    Cañizares P; Paz R; Sáez C; Rodrigo MA
    J Environ Manage; 2009 Jan; 90(1):410-20. PubMed ID: 18082930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical degradation of gallic acid on a BDD anode.
    Panizza M; Cerisola G
    Chemosphere; 2009 Nov; 77(8):1060-4. PubMed ID: 19775725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advanced oxidation processes for the treatment of olive-oil mills wastewater.
    Cañizares P; Lobato J; Paz R; Rodrigo MA; Sáez C
    Chemosphere; 2007 Mar; 67(4):832-8. PubMed ID: 17208280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advanced treatment of biologically pretreated coking wastewater by electrochemical oxidation using boron-doped diamond electrodes.
    Zhu X; Ni J; Lai P
    Water Res; 2009 Sep; 43(17):4347-55. PubMed ID: 19595422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical oxidation and reuse of tannery saline wastewater.
    Sundarapandiyan S; Chandrasekar R; Ramanaiah B; Krishnan S; Saravanan P
    J Hazard Mater; 2010 Aug; 180(1-3):197-203. PubMed ID: 20435417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of caffeine by conductive diamond electrochemical oxidation.
    Indermuhle C; Martín de Vidales MJ; Sáez C; Robles J; Cañizares P; García-Reyes JF; Molina-Díaz A; Comninellis C; Rodrigo MA
    Chemosphere; 2013 Nov; 93(9):1720-5. PubMed ID: 23769468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical oxidation for landfill leachate treatment.
    Deng Y; Englehardt JD
    Waste Manag; 2007; 27(3):380-8. PubMed ID: 16632340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ electrocatalytic oxidation of acid violet 12 dye effluent.
    Mohan N; Balasubramanian N
    J Hazard Mater; 2006 Aug; 136(2):239-43. PubMed ID: 16730894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electro-oxidation of As(III) with dimensionally-stable and conductive-diamond anodes.
    Lacasa E; Cañizares P; Rodrigo MA; Fernández FJ
    J Hazard Mater; 2012 Feb; 203-204():22-8. PubMed ID: 22188787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical oxidation for the treatment of textile industry wastewater.
    Radha KV; Sridevi V; Kalaivani K
    Bioresour Technol; 2009 Jan; 100(2):987-90. PubMed ID: 18760596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of electrochemical reduction and oxidation processes on the decolourisation and degradation of C.I. Reactive Orange 4 solutions.
    del Río AI; Molina J; Bonastre J; Cases F
    Chemosphere; 2009 Jun; 75(10):1329-37. PubMed ID: 19345978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.