BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 18501616)

  • 1. On self-organized shell formation by bovine carbonic anhydrase II, and soluble protein extracted from regenerated shell.
    Lee SW; Park SB; Choi CS
    Micron; 2008 Dec; 39(8):1228-34. PubMed ID: 18501616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hemocyte-mediated shell mineralization in the eastern oyster.
    Mount AS; Wheeler AP; Paradkar RP; Snider D
    Science; 2004 Apr; 304(5668):297-300. PubMed ID: 15073378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nano-structured biogenic calcite: a thermal and chemical approach to folia in oyster shell.
    Lee SW; Kim YM; Kim RH; Choi CS
    Micron; 2008 Jun; 39(4):380-6. PubMed ID: 17498963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The inner-shell film: an immediate structure participating in pearl oyster shell formation.
    Yan Z; Ma Z; Zheng G; Feng Q; Wang H; Xie L; Zhang R
    Chembiochem; 2008 May; 9(7):1093-9. PubMed ID: 18383500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The correlation between organic matrices and biominerals (myostracal prism and folia) of the adult oyster shell, Crassostrea gigas.
    Lee SW; Choi CS
    Micron; 2007; 38(1):58-64. PubMed ID: 16757172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N40, a novel nonacidic matrix protein from pearl oyster nacre, facilitates nucleation of aragonite in vitro.
    Yan Z; Jing G; Gong N; Li C; Zhou Y; Xie L; Zhang R
    Biomacromolecules; 2007 Nov; 8(11):3597-601. PubMed ID: 17929965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The structure-function relationship analysis of Prismalin-14 from the prismatic layer of the Japanese pearl oyster, Pinctada fucata.
    Suzuki M; Nagasawa H
    FEBS J; 2007 Oct; 274(19):5158-66. PubMed ID: 17822437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The crystal behavior of calcium carbonate in water-soluable chitin].
    Song R; He LH; Xie QL; Yang H
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Jul; 27(7):1388-92. PubMed ID: 17944421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzyme-accelerated and structure-guided crystallization of calcium carbonate: role of the carbonic anhydrase in the homologous system.
    Müller WE; Schlossmacher U; Schröder HC; Lieberwirth I; Glasser G; Korzhev M; Neufurth M; Wang X
    Acta Biomater; 2014 Jan; 10(1):450-62. PubMed ID: 23978410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An acidic matrix protein, Pif, is a key macromolecule for nacre formation.
    Suzuki M; Saruwatari K; Kogure T; Yamamoto Y; Nishimura T; Kato T; Nagasawa H
    Science; 2009 Sep; 325(5946):1388-90. PubMed ID: 19679771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nacre calcification in the freshwater mussel Unio pictorum: carbonic anhydrase activity and purification of a 95 kDa calcium-binding glycoprotein.
    Marie B; Luquet G; Bédouet L; Milet C; Guichard N; Medakovic D; Marin F
    Chembiochem; 2008 Oct; 9(15):2515-23. PubMed ID: 18810748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intrinsically disordered mollusk shell prismatic protein that modulates calcium carbonate crystal growth.
    Ndao M; Keene E; Amos FF; Rewari G; Ponce CB; Estroff L; Evans JS
    Biomacromolecules; 2010 Oct; 11(10):2539-44. PubMed ID: 20831150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microtexture of larval shell of oyster, Crassostrea nippona: a FIB-TEM study.
    Kudo M; Kameda J; Saruwatari K; Ozaki N; Okano K; Nagasawa H; Kogure T
    J Struct Biol; 2010 Jan; 169(1):1-5. PubMed ID: 19616099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleation and growth of aragonite crystals at the growth front of nacres in pearl oyster, Pinctada fucata.
    Saruwatari K; Matsui T; Mukai H; Nagasawa H; Kogure T
    Biomaterials; 2009 Jun; 30(16):3028-34. PubMed ID: 19328543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mollusc larval shell formation: amorphous calcium carbonate is a precursor phase for aragonite.
    Weiss IM; Tuross N; Addadi L; Weiner S
    J Exp Zool; 2002 Oct; 293(5):478-91. PubMed ID: 12486808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase.
    Politi Y; Arad T; Klein E; Weiner S; Addadi L
    Science; 2004 Nov; 306(5699):1161-4. PubMed ID: 15539597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical characterization of a bioceramic material: The shell of the Eastern oyster Crassostrea virginica.
    Yoon Y; Mount AS; Hansen KM; Hansen DC
    Bioelectrochemistry; 2011 Jun; 81(2):91-8. PubMed ID: 21550319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbonic acid: an important intermediate in the surface chemistry of calcium carbonate.
    Al-Hosney HA; Grassian VH
    J Am Chem Soc; 2004 Jul; 126(26):8068-9. PubMed ID: 15225019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Template adaptability is key in the oriented crystallization of CaCO3.
    Popescu DC; Smulders MM; Pichon BP; Chebotareva N; Kwak SY; van Asselen OL; Sijbesma RP; DiMasi E; Sommerdijk NA
    J Am Chem Soc; 2007 Nov; 129(45):14058-67. PubMed ID: 17944471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nautilin-63, a novel acidic glycoprotein from the shell nacre of Nautilus macromphalus.
    Marie B; Zanella-Cléon I; Corneillat M; Becchi M; Alcaraz G; Plasseraud L; Luquet G; Marin F
    FEBS J; 2011 Jun; 278(12):2117-30. PubMed ID: 21585656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.