These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 18501912)

  • 21. Distribution of internal strains around bony prominences in pigs.
    Solis LR; Liggins AB; Seres P; Uwiera RR; Poppe NR; Pehowich E; Thompson RB; Mushahwar VK
    Ann Biomed Eng; 2012 Aug; 40(8):1721-39. PubMed ID: 22399330
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Novel method for fabrication of skeletal muscle construct from the C2C12 myoblast cell line using serum-free medium AIM-V.
    Fujita H; Shimizu K; Nagamori E
    Biotechnol Bioeng; 2009 Aug; 103(5):1034-41. PubMed ID: 19350625
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synergy between myogenic and non-myogenic cells in a 3D tissue-engineered craniofacial skeletal muscle construct.
    Brady MA; Lewis MP; Mudera V
    J Tissue Eng Regen Med; 2008 Oct; 2(7):408-17. PubMed ID: 18720445
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessment of mechanical conditions in sub-dermal tissues during sitting: a combined experimental-MRI and finite element approach.
    Linder-Ganz E; Shabshin N; Itzchak Y; Gefen A
    J Biomech; 2007; 40(7):1443-54. PubMed ID: 16920122
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A theoretical model to study the effects of cellular stiffening on the damage evolution in deep tissue injury.
    Nagel T; Loerakker S; Oomens CW
    Comput Methods Biomech Biomed Engin; 2009 Oct; 12(5):585-97. PubMed ID: 19319705
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Parametric finite element analysis of physical stimuli resulting from mechanical stimulation of tissue engineered cartilage.
    Babalola OM; Bonassar LJ
    J Biomech Eng; 2009 Jun; 131(6):061014. PubMed ID: 19449968
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fibrosis and intercellular collagen connections from four weeks of muscle strains.
    Stauber WT; Knack KK; Miller GR; Grimmett JG
    Muscle Nerve; 1996 Apr; 19(4):423-30. PubMed ID: 8622719
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three dimensional multi-scale modelling and analysis of cell damage in cell-encapsulated alginate constructs.
    Yan KC; Nair K; Sun W
    J Biomech; 2010 Apr; 43(6):1031-8. PubMed ID: 20096842
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vivo model for evaluating the effects of mechanical stimulation on tissue-engineered bone repair.
    Boerckel JD; Dupont KM; Kolambkar YM; Lin AS; Guldberg RE
    J Biomech Eng; 2009 Aug; 131(8):084502. PubMed ID: 19604025
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effects of oxidative stress on the compressive damage thresholds of C2C12 mouse myoblasts: implications for deep tissue injury.
    Yao Y; Xiao Z; Wong S; Hsu YC; Cheng T; Chang CC; Bian L; Mak AF
    Ann Biomed Eng; 2015 Feb; 43(2):287-96. PubMed ID: 25558846
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effects of pressure and shear on capillary closure in the microstructure of skeletal muscles.
    Linder-Ganz E; Gefen A
    Ann Biomed Eng; 2007 Dec; 35(12):2095-107. PubMed ID: 17899378
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Factors involved in strain-induced injury in skeletal muscles and outcomes of prolonged exposures.
    Stauber WT
    J Electromyogr Kinesiol; 2004 Feb; 14(1):61-70. PubMed ID: 14759751
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Compressive properties of cartilage-like tissues repaired in vivo with scaffold-free, tissue engineered constructs.
    Katakai D; Imura M; Ando W; Tateishi K; Yoshikawa H; Nakamura N; Fujie H
    Clin Biomech (Bristol, Avon); 2009 Jan; 24(1):110-6. PubMed ID: 18990475
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulating fibrinolysis to engineer skeletal muscle from the C2C12 cell line.
    Khodabukus A; Baar K
    Tissue Eng Part C Methods; 2009 Sep; 15(3):501-11. PubMed ID: 19191517
    [TBL] [Abstract][Full Text] [Related]  

  • 35. How much time does it take to get a pressure ulcer? Integrated evidence from human, animal, and in vitro studies.
    Gefen A
    Ostomy Wound Manage; 2008 Oct; 54(10):26-8, 30-5. PubMed ID: 18927481
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pressure induced deep tissue injury explained.
    Oomens CW; Bader DL; Loerakker S; Baaijens F
    Ann Biomed Eng; 2015 Feb; 43(2):297-305. PubMed ID: 25480479
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A new MR-compatible loading device to study in vivo muscle damage development in rats due to compressive loading.
    Stekelenburg A; Oomens CW; Strijkers GJ; de Graaf L; Bader DL; Nicolay K
    Med Eng Phys; 2006 May; 28(4):331-8. PubMed ID: 16118060
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deep tissue injury from a bioengineering point of view.
    Gefen A
    Ostomy Wound Manage; 2009 Apr; 55(4):26-36. PubMed ID: 19387094
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Flow cytometric cell cycle analysis of muscle precursor cells cultured within 3D scaffolds in a perfusion bioreactor.
    Flaibani M; Luni C; Sbalchiero E; Elvassore N
    Biotechnol Prog; 2009; 25(1):286-95. PubMed ID: 19224607
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of cell density on the maturation and contractile ability of muscle derived cells in a 3D tissue-engineered skeletal muscle model and determination of the cellular and mechanical stimuli required for the synthesis of a postural phenotype.
    Mudera V; Smith AS; Brady MA; Lewis MP
    J Cell Physiol; 2010 Nov; 225(3):646-53. PubMed ID: 20533296
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.