BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 18501950)

  • 1. Mycelium growth and degradation of creosote-treated wood by basydiomycetes.
    Galli E; Brancaleoni E; Di Mario F; Donati E; Frattoni M; Polcaro CM; Rapanà P
    Chemosphere; 2008 Jul; 72(7):1069-72. PubMed ID: 18501950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fungal bioremediation of the creosote-contaminated soil: influence of Pleurotus ostreatus and Irpex lacteus on polycyclic aromatic hydrocarbons removal and soil microbial community composition in the laboratory-scale study.
    Byss M; Elhottová D; Tříska J; Baldrian P
    Chemosphere; 2008 Nov; 73(9):1518-23. PubMed ID: 18782639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fungal bioremediation of creosote-treated wood: a laboratory scale study on creosote components degradation by Pleurotus ostreatus mycelium.
    Polcaro CM; Brancaleoni E; Donati E; Frattoni M; Galli E; Migliore L; Rapanà P
    Bull Environ Contam Toxicol; 2008 Aug; 81(2):180-4. PubMed ID: 18389164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combination of biochar amendment and mycoremediation for polycyclic aromatic hydrocarbons immobilization and biodegradation in creosote-contaminated soil.
    García-Delgado C; Alfaro-Barta I; Eymar E
    J Hazard Mater; 2015 Mar; 285():259-66. PubMed ID: 25506817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polycyclic aromatic hydrocarbons degradation and microbial community shifts during co-composting of creosote-treated wood.
    Covino S; Fabianová T; Křesinová Z; Čvančarová M; Burianová E; Filipová A; Vořísková J; Baldrian P; Cajthaml T
    J Hazard Mater; 2016 Jan; 301():17-26. PubMed ID: 26342147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The degradation of three-ringed polycyclic aromatic hydrocarbons by wood-inhabiting fungus Pleurotus ostreatus and soil-inhabiting fungus Agaricus bisporus.
    Pozdnyakova N; Dubrovskaya E; Chernyshova M; Makarov O; Golubev S; Balandina S; Turkovskaya O
    Fungal Biol; 2018 May; 122(5):363-372. PubMed ID: 29665962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mycoremediation of manganese and phenanthrene by Pleurotus eryngii mycelium enhanced by Tween 80 and saponin.
    Wu M; Xu Y; Ding W; Li Y; Xu H
    Appl Microbiol Biotechnol; 2016 Aug; 100(16):7249-61. PubMed ID: 27102128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradation of creosote-treated wood by two novel constructed microbial consortia for the enhancement of methane production.
    Ali SS; Mustafa AM; Kornaros M; Sun J; Khalil M; El-Shetehy M
    Bioresour Technol; 2021 Mar; 323():124544. PubMed ID: 33360721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inoculum carrier and contaminant bioavailability affect fungal degradation performances of PAH-contaminated solid matrices from a wood preservation plant.
    Covino S; Svobodová K; Cvancarová M; D'Annibale A; Petruccioli M; Federici F; Kresinová Z; Galli E; Cajthaml T
    Chemosphere; 2010 May; 79(8):855-64. PubMed ID: 20299070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effect of polycyclic aromatic hydrocarbons on laccase production by white rot fungus Pleurotus ostreatus D1].
    Pozdniakova NN; Nikiforova SV; Makarov OE; Turkovskaia OV
    Prikl Biokhim Mikrobiol; 2011; 47(5):595-601. PubMed ID: 22232903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of cadmium and mercury on activities of ligninolytic enzymes and degradation of polycyclic aromatic hydrocarbons by Pleurotus ostreatus in soil.
    Baldrian P; in Der Wiesche C; Gabriel J; Nerud F; Zadrazil F
    Appl Environ Microbiol; 2000 Jun; 66(6):2471-8. PubMed ID: 10831426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracellular oxidative enzyme production and PAH removal in soil by exploratory mycelium of white rot fungi.
    Novotný C; Erbanová P; Sasek V; Kubátová A; Cajthaml T; Lang E; Krahl J; Zadrazil F
    Biodegradation; 1999 Jun; 10(3):159-68. PubMed ID: 10492884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of polycyclic aromatic hydrocarbons by combined chemical pre-oxidation and bioremediation in creosote contaminated soil.
    Kulik N; Goi A; Trapido M; Tuhkanen T
    J Environ Manage; 2006 Mar; 78(4):382-91. PubMed ID: 16154683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PUF-Immobilized
    Struszczyk-Świta K; Drożdżyński P; Murawska K; Marchut-Mikołajczyk O
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of modified Fenton's reaction on microbial activity and removal of PAHs in creosote oil contaminated soil.
    Palmroth MR; Langwaldt JH; Aunola TA; Goi A; Münster U; Puhakka JA; Tuhkanen TA
    Biodegradation; 2006 Mar; 17(2):131-41. PubMed ID: 16456613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of biodegradation of mixtures of polycyclic aromatic hydrocarbons.
    Lotfabad SK; Gray MR
    Appl Microbiol Biotechnol; 2002 Nov; 60(3):361-6. PubMed ID: 12436320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diversity of fungi in creosote-treated crosstie wastes and their resistance to polycyclic aromatic hydrocarbons.
    Kim MJ; Lee H; Choi YS; Kim GH; Huh NY; Lee S; Lim YW; Lee SS; Kim JJ
    Antonie Van Leeuwenhoek; 2010 May; 97(4):377-87. PubMed ID: 20127413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mobilizing agents enhance fungal degradation of polycyclic aromatic hydrocarbons and affect diversity of indigenous bacteria in soil.
    Leonardi V; Giubilei MA; Federici E; Spaccapelo R; Sasek V; Novotny C; Petruccioli M; D'Annibale A
    Biotechnol Bioeng; 2008 Oct; 101(2):273-85. PubMed ID: 18727031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioaugmentation of tar-contaminated soils under field conditions using Pleurotus ostreatus refuse from commercial mushroom production.
    Hestbjerg H; Willumsen PA; Christensen M; Andersen O; Jacobsen CS
    Environ Toxicol Chem; 2003 Apr; 22(4):692-8. PubMed ID: 12685699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Screening of Pleurotus ostreatus isolates for their ligninolytic properties during cultivation on natural substrates.
    Eichlerová I; Homolka L; Nerud F; Zadrazil F; Baldrian P; Gabriel J
    Biodegradation; 2000; 11(5):279-87. PubMed ID: 11487057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.