BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 18502806)

  • 1. Model-based prediction of the alpha-hemolysin structure in the hexameric state.
    Furini S; Domene C; Rossi M; Tartagni M; Cavalcanti S
    Biophys J; 2008 Sep; 95(5):2265-74. PubMed ID: 18502806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imaging alpha-hemolysin with molecular dynamics: ionic conductance, osmotic permeability, and the electrostatic potential map.
    Aksimentiev A; Schulten K
    Biophys J; 2005 Jun; 88(6):3745-61. PubMed ID: 15764651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural characterization of the alpha-hemolysin monomer from Staphylococcus aureus.
    Meesters C; Brack A; Hellmann N; Decker H
    Proteins; 2009 Apr; 75(1):118-26. PubMed ID: 18798569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore.
    Song L; Hobaugh MR; Shustak C; Cheley S; Bayley H; Gouaux JE
    Science; 1996 Dec; 274(5294):1859-66. PubMed ID: 8943190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Staphylococcal alpha-hemolysin can form hexamers in phospholipid bilayers.
    Czajkowsky DM; Sheng S; Shao Z
    J Mol Biol; 1998 Feb; 276(2):325-30. PubMed ID: 9512705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ion channels and bacterial infection: the case of beta-barrel pore-forming protein toxins of Staphylococcus aureus.
    Menestrina G; Dalla Serra M; Comai M; Coraiola M; Viero G; Werner S; Colin DA; Monteil H; Prévost G
    FEBS Lett; 2003 Sep; 552(1):54-60. PubMed ID: 12972152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ion permeation through the alpha-hemolysin channel: theoretical studies based on Brownian dynamics and Poisson-Nernst-Plank electrodiffusion theory.
    Noskov SY; Im W; Roux B
    Biophys J; 2004 Oct; 87(4):2299-309. PubMed ID: 15454431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. alpha-Hemolysin from Staphylococcus aureus: an archetype of beta-barrel, channel-forming toxins.
    Gouaux E
    J Struct Biol; 1998; 121(2):110-22. PubMed ID: 9615434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heptameric structures of two alpha-hemolysin mutants imaged with in situ atomic force microscopy.
    Malghani MS; Fang Y; Cheley S; Bayley H; Yang J
    Microsc Res Tech; 1999 Mar; 44(5):353-6. PubMed ID: 10090210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrophysiological evidence for heptameric stoichiometry of ion channels formed by Staphylococcus aureus alpha-toxin in planar lipid bilayers.
    Krasilnikov OV; Merzlyak PG; Yuldasheva LN; Rodrigues CG; Bhakdi S; Valeva A
    Mol Microbiol; 2000 Sep; 37(6):1372-8. PubMed ID: 10998169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The heptameric prepore of a staphylococcal alpha-hemolysin mutant in lipid bilayers imaged by atomic force microscopy.
    Fang Y; Cheley S; Bayley H; Yang J
    Biochemistry; 1997 Aug; 36(31):9518-22. PubMed ID: 9235997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. γ-Hemolysin oligomeric structure and effect of its formation on supported lipid bilayers: an AFM investigation.
    Alessandrini A; Viero G; Dalla Serra M; Prévost G; Facci P
    Biochim Biophys Acta; 2013 Feb; 1828(2):405-11. PubMed ID: 23036932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuum electrostatic calculations of the pKa of ionizable residues in an ion channel: dynamic vs. static input structure.
    Aguilella-Arzo M; Aguilella VM
    Eur Phys J E Soft Matter; 2010 Apr; 31(4):429-39. PubMed ID: 20419466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pore formation by S. aureus alpha-toxin in liposomes and planar lipid bilayers: effects of nonelectrolytes.
    Bashford CL; Alder GM; Fulford LG; Korchev YE; Kovacs E; MacKinnon A; Pederzolli C; Pasternak CA
    J Membr Biol; 1996 Mar; 150(1):37-45. PubMed ID: 8699478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The hinge portion of the S. aureus alpha-toxin crosses the lipid bilayer and is part of the trans-mouth of the channel.
    Krasilnikov OV; Yuldasheva LN; Merzlyak PG; Capistrano MF; Nogueira RA
    Biochim Biophys Acta; 1997 Oct; 1329(1):51-60. PubMed ID: 9370244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High resolution crystallographic studies of alpha-hemolysin-phospholipid complexes define heptamer-lipid head group interactions: implication for understanding protein-lipid interactions.
    Galdiero S; Gouaux E
    Protein Sci; 2004 Jun; 13(6):1503-11. PubMed ID: 15152085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion Mobility-Mass Spectrometry Reveals That α-Hemolysin from
    Wilson JW; Rolland AD; Klausen GM; Prell JS
    Anal Chem; 2019 Aug; 91(15):10204-10211. PubMed ID: 31282652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of functional Staphylococcus aureus alpha-hemolysin channels in tethered bilayer lipid membranes.
    McGillivray DJ; Valincius G; Heinrich F; Robertson JW; Vanderah DJ; Febo-Ayala W; Ignatjev I; Lösche M; Kasianowicz JJ
    Biophys J; 2009 Feb; 96(4):1547-53. PubMed ID: 19217871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorinated amphiphiles control the insertion of α-hemolysin pores into lipid bilayers.
    Raychaudhuri P; Li Q; Mason A; Mikhailova E; Heron AJ; Bayley H
    Biochemistry; 2011 Mar; 50(10):1599-606. PubMed ID: 21275394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non stochastic distribution of single channels in planar lipid bilayers.
    Krasilnikov OV; Merzliak PG; Yuldasheva LN; Nogueira RA; Rodrigues CG
    Biochim Biophys Acta; 1995 Feb; 1233(2):105-10. PubMed ID: 7532434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.