These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 18503130)

  • 1. Studies on the aggregation behaviour of pegylated human red blood cells with the Zeta sedimentation technique.
    Jovtchev S; Stoeff S; Arnold K; Zschörnig O
    Clin Hemorheol Microcirc; 2008; 39(1-4):229-33. PubMed ID: 18503130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface characterization of poly(ethylene glycol) coated human red blood cells by particle electrophoresis.
    Neu B; Armstrong JK; Fisher TC; Meiselman HJ
    Biorheology; 2003; 40(4):477-87. PubMed ID: 12775912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrophoretic mobility of human red blood cells coated with poly(ethylene glycol).
    Neu B; Armstrong JK; Fisher TC; Bäumler H; Meiselman HJ
    Biorheology; 2001; 38(5-6):389-403. PubMed ID: 12016322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Particle electrophoresis as a tool to understand the aggregation behavior of red blood cells.
    Baskurt OK; Tugral E; Neu B; Meiselman HJ
    Electrophoresis; 2002 Jul; 23(13):2103-9. PubMed ID: 12210265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrophoretic mobility of human erythrocytes in the presence of poly(styrene sulfonate).
    Neu B; Meiselman HJ; Bäumler H
    Electrophoresis; 2002 Aug; 23(15):2363-8. PubMed ID: 12210188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro effects of polyethylene glycol in University of Wisconsin preservation solution on human red blood cell aggregation and hemorheology.
    Zhao WY; Xiong HY; Yuan Q; Zeng L; Wang LM; Zhu YH
    Clin Hemorheol Microcirc; 2011; 47(3):177-85. PubMed ID: 21498897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Covalent binding of polyethylene glycol to the surface of red blood cells as detected and followed up by cell electrophoresis and rheological methods.
    Sabolovic D; Sestier C; Perrotin P; Guillet R; Tefit M; Boynard M
    Electrophoresis; 2000 Jan; 21(2):301-6. PubMed ID: 10675005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation and purification of methoxypoly(ethylene glycol) grafted red blood cells via two-phase partitioning.
    Bradley AJ; Scott MD
    J Chromatogr B Analyt Technol Biomed Life Sci; 2004 Jul; 807(1):163-8. PubMed ID: 15177175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A method to optimize PEG-coating of red blood cells.
    Hashemi-Najafabadi S; Vasheghani-Farahani E; Shojaosadati SA; Rasaee MJ; Armstrong JK; Moin M; Pourpak Z
    Bioconjug Chem; 2006; 17(5):1288-93. PubMed ID: 16984140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of red blood cell aggregation and blood viscosity by the covalent attachment of Pluronic copolymers.
    Armstrong JK; Meiselman HJ; Wenby RB; Fisher TC
    Biorheology; 2001; 38(2-3):239-47. PubMed ID: 11381178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aggregation behavior and electrophoretic mobility of red blood cells in various mammalian species.
    Baskurt OK; Bor-Kucukatay M; Yalcin O; Meiselman HJ
    Biorheology; 2000; 37(5-6):417-28. PubMed ID: 11204547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aggregation of human RBC in binary dextran-PEG polymer mixtures.
    Neu B; Armstrong JK; Fisher TC; Meiselman HJ
    Biorheology; 2001; 38(1):53-68. PubMed ID: 11381165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of polymer architecture on antigens camouflage, CD47 protection and complement mediated lysis of surface grafted red blood cells.
    Chapanian R; Constantinescu I; Rossi NA; Medvedev N; Brooks DE; Scott MD; Kizhakkedathu JN
    Biomaterials; 2012 Nov; 33(31):7871-83. PubMed ID: 22840223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Depletion-mediated red blood cell aggregation in polymer solutions.
    Neu B; Meiselman HJ
    Biophys J; 2002 Nov; 83(5):2482-90. PubMed ID: 12414682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conductometric study of shear-dependent processes in red cell suspensions. I. Effect of red blood cell aggregate morphology on blood conductance.
    Pribush A; Meyerstein D; Meyerstein N
    Biorheology; 2004; 41(1):13-28. PubMed ID: 14967887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the effect of microstructural changes of blood on energy dissipation in Couette flow.
    Kaliviotis E; Yianneskis M
    Clin Hemorheol Microcirc; 2008; 39(1-4):235-42. PubMed ID: 18503131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of procaine hydrochloride on the aggregation behavior and suspension viscoelasticity of human red blood cells.
    Sowemimo-Coker SO; Yardin G; Meiselman HJ
    Biorheology; 1989; 26(5):951-72. PubMed ID: 2620091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blood rheology and hemodynamics.
    Baskurt OK; Meiselman HJ
    Semin Thromb Hemost; 2003 Oct; 29(5):435-50. PubMed ID: 14631543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immune complex binding by immunocamouflaged [poly(ethylene glycol)-grafted] erythrocytes.
    Bradley AJ; Scott MD
    Am J Hematol; 2007 Nov; 82(11):970-5. PubMed ID: 17654505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of erythrocyte aggregation in the abnormal hemorheology of multiple myeloma patients.
    Pribush A; Hatskelzon L; Mazor D; Katorza E; Zilberman-Kravits D; Meyerstein N
    Clin Hemorheol Microcirc; 2006; 34(4):529-36. PubMed ID: 16687792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.