These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 18503270)
1. Surface tension and tolman length of spherical particulate in contact with fluid. He Y; Mi J; Zhong C J Phys Chem B; 2008 Jun; 112(24):7251-6. PubMed ID: 18503270 [TBL] [Abstract][Full Text] [Related]
2. An accurate density functional theory for the vapor-liquid interface of associating chain molecules based on the statistical associating fluid theory for potentials of variable range. Gloor GJ; Jackson G; Blas FJ; Del Río EM; de Miguel E J Chem Phys; 2004 Dec; 121(24):12740-59. PubMed ID: 15606300 [TBL] [Abstract][Full Text] [Related]
3. A novel weighted density functional theory for adsorption, fluid-solid interfacial tension, and disjoining properties of simple liquid films on planar solid surfaces. Yu YX J Chem Phys; 2009 Jul; 131(2):024704. PubMed ID: 19604007 [TBL] [Abstract][Full Text] [Related]
4. On the determination of the structure and tension of the interface between a fluid and a curved hard wall. Blokhuis EM; Kuipers J J Chem Phys; 2007 Feb; 126(5):054702. PubMed ID: 17302493 [TBL] [Abstract][Full Text] [Related]
5. Density functional theory of inhomogeneous liquids. II. A fundamental measure approach. Lutsko JF J Chem Phys; 2008 May; 128(18):184711. PubMed ID: 18532840 [TBL] [Abstract][Full Text] [Related]
6. Conceptual aspects of line tensions. Schimmele L; Napiórkowski M; Dietrich S J Chem Phys; 2007 Oct; 127(16):164715. PubMed ID: 17979379 [TBL] [Abstract][Full Text] [Related]
7. Some estimates of the surface tension of curved surfaces using density functional theory. Barrett JC J Chem Phys; 2006 Apr; 124(14):144705. PubMed ID: 16626229 [TBL] [Abstract][Full Text] [Related]
8. First-order mean-spherical approximation for interfacial phenomena: a unified method from bulk-phase equilibria study. Tang Y J Chem Phys; 2005 Nov; 123(20):204704. PubMed ID: 16351290 [TBL] [Abstract][Full Text] [Related]
9. A density functional theory for vapor-liquid interfaces using the PCP-SAFT equation of state. Gross J J Chem Phys; 2009 Nov; 131(20):204705. PubMed ID: 19947702 [TBL] [Abstract][Full Text] [Related]
10. Surface tension of droplets and Tolman lengths of real substances and mixtures from density functional theory. Rehner P; Gross J J Chem Phys; 2018 Apr; 148(16):164703. PubMed ID: 29716214 [TBL] [Abstract][Full Text] [Related]
11. Tolman lengths and rigidity constants from free-energy functionals-General expressions and comparison of theories. Rehner P; Aasen A; Wilhelmsen Ø J Chem Phys; 2019 Dec; 151(24):244710. PubMed ID: 31893882 [TBL] [Abstract][Full Text] [Related]
12. A perspective on the interfacial properties of nanoscopic liquid drops. Malijevský A; Jackson G J Phys Condens Matter; 2012 Nov; 24(46):464121. PubMed ID: 23114181 [TBL] [Abstract][Full Text] [Related]
13. Scaled particle theory for hard sphere pairs. II. Numerical analysis. Chatterjee S; Debenedetti PG; Stillinger FH J Chem Phys; 2006 Nov; 125(20):204505. PubMed ID: 17144713 [TBL] [Abstract][Full Text] [Related]
14. Direct determination of the Tolman length from the bulk pressures of liquid drops via molecular dynamics simulations. van Giessen AE; Blokhuis EM J Chem Phys; 2009 Oct; 131(16):164705. PubMed ID: 19894968 [TBL] [Abstract][Full Text] [Related]
15. On the thermodynamic expansion of the nucleation free-energy barrier. Barrett JC J Chem Phys; 2009 Aug; 131(8):084711. PubMed ID: 19725625 [TBL] [Abstract][Full Text] [Related]
16. Wetting behavior of spherical nanoparticles at a vapor-liquid interface: a density functional theory study. Zeng M; Mi J; Zhong C Phys Chem Chem Phys; 2011 Mar; 13(9):3932-41. PubMed ID: 21212890 [TBL] [Abstract][Full Text] [Related]
17. Investigation of excess adsorption, solvation force, and plate-fluid interfacial tension for Lennard-Jones fluid confined in slit pores. Fu D J Chem Phys; 2006 Apr; 124(16):164701. PubMed ID: 16674151 [TBL] [Abstract][Full Text] [Related]
18. Curvature dependence of surface free energy of liquid drops and bubbles: A simulation study. Block BJ; Das SK; Oettel M; Virnau P; Binder K J Chem Phys; 2010 Oct; 133(15):154702. PubMed ID: 20969414 [TBL] [Abstract][Full Text] [Related]
19. Prediction of phase behavior of nanoconfined Lennard-Jones fluids with density functional theory based on the first-order mean spherical approximation. Mi J; Tang Y; Zhong C; Li YG J Chem Phys; 2006 Apr; 124(14):144709. PubMed ID: 16626233 [TBL] [Abstract][Full Text] [Related]
20. A mean field approach for computing solid-liquid surface tension for nanoscale interfaces. Chiu CC; Ranatunga RJ; Torres Flores D; Pérez DV; Moore PB; Shinoda W; Nielsen SO J Chem Phys; 2010 Feb; 132(5):054706. PubMed ID: 20136332 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]