These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 18503287)

  • 1. Lipid nanotubule fabrication by microfluidic tweezing.
    West J; Manz A; Dittrich PS
    Langmuir; 2008 Jun; 24(13):6754-8. PubMed ID: 18503287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solvent-resistant photocurable liquid fluoropolymers for microfluidic device fabrication [corrected].
    Rolland JP; Van Dam RM; Schorzman DA; Quake SR; DeSimone JM
    J Am Chem Soc; 2004 Mar; 126(8):2322-3. PubMed ID: 14982433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical behavior of a supported lipid bilayer under external shear forces.
    Jönsson P; Beech JP; Tegenfeldt JO; Höök F
    Langmuir; 2009 Jun; 25(11):6279-86. PubMed ID: 19408897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled deposition of cells in sealed microfluidics using flow velocity boundaries.
    Lovchik RD; Bianco F; Matteoli M; Delamarche E
    Lab Chip; 2009 May; 9(10):1395-402. PubMed ID: 19417906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On-chip extrusion of lipid vesicles and tubes through microsized apertures.
    Dittrich PS; Heule M; Renaud P; Manz A
    Lab Chip; 2006 Apr; 6(4):488-93. PubMed ID: 16572210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shear-driven motion of supported lipid bilayers in microfluidic channels.
    Jönsson P; Beech JP; Tegenfeldt JO; Höök F
    J Am Chem Soc; 2009 Apr; 131(14):5294-7. PubMed ID: 19309139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct printing of self-assembled lipid tubules on substrates.
    Zhao Y; Fang J
    Langmuir; 2008 May; 24(9):5113-7. PubMed ID: 18366227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic assembly blocks.
    Rhee M; Burns MA
    Lab Chip; 2008 Aug; 8(8):1365-73. PubMed ID: 18651080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Massively parallel production of lipid microstructures.
    West J; Manz A; Dittrich PS
    Lab Chip; 2008 Nov; 8(11):1852-5. PubMed ID: 18941685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional ordered arrays of aligned lipid tubules on substrates with microfluidic networks.
    Mahajan N; Fang J
    Langmuir; 2005 Mar; 21(7):3153-7. PubMed ID: 15779998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of Lipid Nanotubules by Ultrasonic Drag Force.
    Wang Z; Mao X; Wang H; Wang S; Yang Z
    Langmuir; 2021 Aug; 37(30):8945-8952. PubMed ID: 34297899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamically reconfigurable liquid-core liquid-cladding lens in a microfluidic channel.
    Tang SK; Stan CA; Whitesides GM
    Lab Chip; 2008 Mar; 8(3):395-401. PubMed ID: 18305856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poly(dimethylsiloxane)-coated sensor devices for the formation of supported lipid bilayers and the subsequent study of membrane interactions.
    Shahal T; Melzak KA; Lowe CR; Gizeli E
    Langmuir; 2008 Oct; 24(19):11268-75. PubMed ID: 18729340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patterning, integration and characterisation of polymer optical oxygen sensors for microfluidic devices.
    Nock V; Blaikie RJ; David T
    Lab Chip; 2008 Aug; 8(8):1300-7. PubMed ID: 18651072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ninety-six-well planar lipid bilayer chip for ion channel recording fabricated by hybrid stereolithography.
    Suzuki H; Le Pioufle B; Takeuchi S
    Biomed Microdevices; 2009 Feb; 11(1):17-22. PubMed ID: 18584329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A conformal nano-adhesive via initiated chemical vapor deposition for microfluidic devices.
    Im SG; Bong KW; Lee CH; Doyle PS; Gleason KK
    Lab Chip; 2009 Feb; 9(3):411-6. PubMed ID: 19156290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow-through functionalized PDMS microfluidic channels with dextran derivative for ELISAs.
    Yu L; Li CM; Liu Y; Gao J; Wang W; Gan Y
    Lab Chip; 2009 May; 9(9):1243-7. PubMed ID: 19370243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Versatile microfluidic total internal reflection (TIR)-based devices: application to microbeads velocity measurement and single molecule detection with upright and inverted microscope.
    Le NC; Yokokawa R; Dao DV; Nguyen TD; Wells JC; Sugiyama S
    Lab Chip; 2009 Jan; 9(2):244-50. PubMed ID: 19107280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of reversibly adhesive fluidic devices using magnetism.
    Rafat M; Raad DR; Rowat AC; Auguste DT
    Lab Chip; 2009 Oct; 9(20):3016-9. PubMed ID: 19789760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable open-channel microfluidics on soft poly(dimethylsiloxane) (PDMS) substrates with sinusoidal grooves.
    Khare K; Zhou J; Yang S
    Langmuir; 2009 Nov; 25(21):12794-9. PubMed ID: 19572521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.