These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 18503748)

  • 1. Phosphoserine aminoacylation of tRNA bearing an unnatural base anticodon.
    Fukunaga R; Harada Y; Hirao I; Yokoyama S
    Biochem Biophys Res Commun; 2008 Aug; 372(3):480-5. PubMed ID: 18503748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aminoacylation of tRNA with phosphoserine for synthesis of cysteinyl-tRNA(Cys).
    Zhang CM; Liu C; Slater S; Hou YM
    Nat Struct Mol Biol; 2008 May; 15(5):507-14. PubMed ID: 18425141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional idiosyncrasies of tRNA isoacceptors in cognate and noncognate aminoacylation systems.
    Fender A; Sissler M; Florentz C; Giegé R
    Biochimie; 2004 Jan; 86(1):21-9. PubMed ID: 14987797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An unnatural base pair system for in vitro replication and transcription.
    Hirao I; Kimoto M; Mitsui T; Fujiwara T; Kawai R; Sato A; Harada Y; Yokoyama S
    Nucleic Acids Symp Ser (Oxf); 2006; (50):33-4. PubMed ID: 17150803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural insights into the first step of RNA-dependent cysteine biosynthesis in archaea.
    Fukunaga R; Yokoyama S
    Nat Struct Mol Biol; 2007 Apr; 14(4):272-9. PubMed ID: 17351629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redundant synthesis of cysteinyl-tRNACys in Methanosarcina mazei.
    Hauenstein SI; Perona JJ
    J Biol Chem; 2008 Aug; 283(32):22007-17. PubMed ID: 18559341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient aminoacylation of tRNA(Lys,3) by human lysyl-tRNA synthetase is dependent on covalent continuity between the acceptor stem and the anticodon domain.
    Stello T; Hong M; Musier-Forsyth K
    Nucleic Acids Res; 1999 Dec; 27(24):4823-9. PubMed ID: 10572184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Four-base codon/anticodon strategy and non-enzymatic aminoacylation for protein engineering with non-natural amino acids.
    Sisido M; Ninomiya K; Ohtsuki T; Hohsaka T
    Methods; 2005 Jul; 36(3):270-8. PubMed ID: 16076453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular recognition of tryptophan tRNA by tryptophanyl-tRNA synthetase from Aeropyrum pernix K1.
    Tsuchiya W; Hasegawa T
    J Biochem; 2009 May; 145(5):635-41. PubMed ID: 19179361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The pathogenic U3271C human mitochondrial tRNA(Leu(UUR)) mutation disrupts a fragile anticodon stem.
    Wittenhagen LM; Roy MD; Kelley SO
    Nucleic Acids Res; 2003 Jan; 31(2):596-601. PubMed ID: 12527767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional compensation by particular nucleotide substitutions of a critical G*U wobble base-pair during aminoacylation of transfer RNA.
    McClain WH; Gabriel K; Bhattacharya S; Jou YY; Schneider J
    J Mol Biol; 1999 Mar; 286(4):1025-32. PubMed ID: 10047479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superposition of a tRNASer acceptor stem microhelix into the seryl-tRNA synthetase complex.
    Förster C; Brauer AB; Fürste JP; Betzel Ch; Weber M; Cordes F; Erdmann VA
    Biochem Biophys Res Commun; 2007 Oct; 362(2):415-8. PubMed ID: 17719008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emergence of the universal genetic code imprinted in an RNA record.
    Hohn MJ; Park HS; O'Donoghue P; Schnitzbauer M; Söll D
    Proc Natl Acad Sci U S A; 2006 Nov; 103(48):18095-100. PubMed ID: 17110438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. tRNA structure and ribosomal function. II. Interaction between anticodon helix and other tRNA mutations.
    Schultz DW; Yarus M
    J Mol Biol; 1994 Feb; 235(5):1395-405. PubMed ID: 8107081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selenocysteine tRNA and serine tRNA are aminoacylated by the same synthetase, but may manifest different identities with respect to the long extra arm.
    Ohama T; Yang DC; Hatfield DL
    Arch Biochem Biophys; 1994 Dec; 315(2):293-301. PubMed ID: 7986071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expanding the genetic code of Escherichia coli with phosphoserine.
    Park HS; Hohn MJ; Umehara T; Guo LT; Osborne EM; Benner J; Noren CJ; Rinehart J; Söll D
    Science; 2011 Aug; 333(6046):1151-4. PubMed ID: 21868676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recognition of tRNAs by aminoacyl-tRNA synthetases: Escherichia coli tRNAMet and E. coli methionyl-tRNA synthetase.
    Schulman LH; Pelka H
    Fed Proc; 1984 Dec; 43(15):2977-80. PubMed ID: 6389181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aminoacylation of the anticodon stem by a tRNA-synthetase paralog: relic of an ancient code?
    Grosjean H; de Crécy-Lagard V; Björk GR
    Trends Biochem Sci; 2004 Oct; 29(10):519-22. PubMed ID: 15450604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identity elements of Thermus thermophilus tRNA(Thr).
    Nameki N; Asahara H; Hasegawa T
    FEBS Lett; 1996 Nov; 396(2-3):201-7. PubMed ID: 8914987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ chemical aminoacylation with amino acid thioesters linked to a peptide nucleic acid.
    Ninomiya K; Minohata T; Nishimura M; Sisido M
    J Am Chem Soc; 2004 Dec; 126(49):15984-9. PubMed ID: 15584731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.