BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 18503819)

  • 1. Evaluation of pushrim-activated power-assisted wheelchairs using ANSI/RESNA standards.
    Karmarkar A; Cooper RA; Liu HY; Connor S; Puhlman J
    Arch Phys Med Rehabil; 2008 Jun; 89(6):1191-8. PubMed ID: 18503819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of a pushrim-activated, power-assisted wheelchair.
    Cooper RA; Fitzgerald SG; Boninger ML; Prins K; Rentschler AJ; Arva J; O'connor TJ
    Arch Phys Med Rehabil; 2001 May; 82(5):702-8. PubMed ID: 11346854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the safety and durability of low-cost nonprogrammable electric powered wheelchairs.
    Pearlman JL; Cooper RA; Karnawat J; Cooper R; Boninger ML
    Arch Phys Med Rehabil; 2005 Dec; 86(12):2361-70. PubMed ID: 16344036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of titanium ultralight manual wheelchairs using ANSI/ RESNA standards.
    Liu HY; Cooper RA; Pearlman J; Cooper R; Connor S
    J Rehabil Res Dev; 2008; 45(9):1251-67. PubMed ID: 19319751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ANSI/RESNA wheelchair standards: sample evaluation and guide to interpreting test data for prescribing power wheelchairs.
    Health Devices; 1993 Oct; 22(10):432-84. PubMed ID: 8113067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of selected electric-powered wheelchairs using the ANSI/RESNA standards.
    Rentschler AJ; Cooper RA; Fitzgerald SG; Boninger ML; Guo S; Ammer WA; Vitek M; Algood D
    Arch Phys Med Rehabil; 2004 Apr; 85(4):611-9. PubMed ID: 15083438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of scooters using ANSI/RESNA standards.
    Souza AE; Pearlman JL; Cooper R; Kelleher A; Gebrosky B; Cooper RA
    J Rehabil Res Dev; 2013; 50(7):1017-34. PubMed ID: 24301438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of 3 pushrim-activated power-assisted wheelchairs in patients with spinal cord injury.
    Guillon B; Van-Hecke G; Iddir J; Pellegrini N; Beghoul N; Vaugier I; Figère M; Pradon D; Lofaso F
    Arch Phys Med Rehabil; 2015 May; 96(5):894-904. PubMed ID: 25620717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of lightweight wheelchairs using ANSI/RESNA testing standards.
    Gebrosky B; Pearlman J; Cooper RA; Cooper R; Kelleher A
    J Rehabil Res Dev; 2013; 50(10):1373-89. PubMed ID: 24699973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of shoulder muscle electromyographic activity during standard manual wheelchair and push-rim activated power assisted wheelchair propulsion in persons with complete tetraplegia.
    Lighthall-Haubert L; Requejo PS; Mulroy SJ; Newsam CJ; Bontrager E; Gronley JK; Perry J
    Arch Phys Med Rehabil; 2009 Nov; 90(11):1904-15. PubMed ID: 19887216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of methods for determining rearward static stability of manual wheelchairs.
    Cooper RA; Stewart KJ; VanSickle DP
    J Rehabil Res Dev; 1994; 31(2):144-7. PubMed ID: 7965871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Power-assisted wheels ease energy costs and perceptual responses to wheelchair propulsion in persons with shoulder pain and spinal cord injury.
    Nash MS; Koppens D; van Haaren M; Sherman AL; Lippiatt JP; Lewis JE
    Arch Phys Med Rehabil; 2008 Nov; 89(11):2080-5. PubMed ID: 18996235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship between wheelchair durability and wheelchair type and years of test.
    Wang H; Liu HY; Pearlman J; Cooper R; Jefferds A; Connor S; Cooper RA
    Disabil Rehabil Assist Technol; 2010; 5(5):318-22. PubMed ID: 20131972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of a pushrim-activated power-assisted wheelchair on the metabolic demands, stroke frequency, and range of motion among subjects with tetraplegia.
    Algood SD; Cooper RA; Fitzgerald SG; Cooper R; Boninger ML
    Arch Phys Med Rehabil; 2004 Nov; 85(11):1865-71. PubMed ID: 15520983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design features that affect the maneuverability of wheelchairs and scooters.
    Koontz AM; Brindle ED; Kankipati P; Feathers D; Cooper RA
    Arch Phys Med Rehabil; 2010 May; 91(5):759-64. PubMed ID: 20434614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of wheelchair-seating stiffness and energy absorption on occupant frontal impact kinematics and submarining risk using computer simulation.
    Bertocci G; Souza AL; Szobota S
    J Rehabil Res Dev; 2003; 40(2):125-30. PubMed ID: 15077638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redefining the manual wheelchair stroke cycle: identification and impact of nonpropulsive pushrim contact.
    Kwarciak AM; Sisto SA; Yarossi M; Price R; Komaroff E; Boninger ML
    Arch Phys Med Rehabil; 2009 Jan; 90(1):20-6. PubMed ID: 19154825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Life-cycle analysis of depot versus rehabilitation manual wheelchairs.
    Cooper RA; Robertson RN; Lawrence B; Heil T; Albright SJ; VanSickle DP; Gonzalez J
    J Rehabil Res Dev; 1996 Feb; 33(1):45-55. PubMed ID: 8868417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance of selected lightweight wheelchairs on ANSI/RESNA tests. American National Standards Institute-Rehabilitation Engineering and Assistive Technology Society of North America.
    Cooper RA; Gonzalez J; Lawrence B; Renschler A; Boninger ML; VanSickle DP
    Arch Phys Med Rehabil; 1997 Oct; 78(10):1138-44. PubMed ID: 9339166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wheelchair armrest strength testing.
    Cooper RA; Rentschler AJ; O'Connor TJ; Ster JF
    Assist Technol; 2000; 12(2):106-15. PubMed ID: 11508400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.