These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 1850426)

  • 21. A DNA binding motif coordinating synthesis and degradation in proofreading DNA polymerases.
    Truniger V; Lázaro JM; Salas M; Blanco L
    EMBO J; 1996 Jul; 15(13):3430-41. PubMed ID: 8670845
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pyrophosphorolysis-activated polymerization (PAP): application to allele-specific amplification.
    Liu Q; Sommer SS
    Biotechniques; 2000 Nov; 29(5):1072-6, 1078, 1080 passim. PubMed ID: 11084870
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Interaction of dNTP-binding sites of human DNA polymerase alpha and The Klenow fragment of Escherichia coli DNA polymerase I with nucleotides, pyrophosphate and their analogs].
    Nevinskiĭ GA; Potapova IA; Tarusova NB; Khalabuda OV; Khomov VV
    Mol Biol (Mosk); 1990; 24(1):104-16. PubMed ID: 2161489
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interaction of herpes simplex virus type 1 DNA polymerase and the UL42 accessory protein with a model primer template.
    Gottlieb J; Challberg MD
    J Virol; 1994 Aug; 68(8):4937-45. PubMed ID: 8035492
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization and purification of a phage phi 29-encoded DNA polymerase required for the initiation of replication.
    Blanco L; Salas M
    Proc Natl Acad Sci U S A; 1984 Sep; 81(17):5325-9. PubMed ID: 6433348
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phi 29 DNA polymerase requires the N-terminal domain to bind terminal protein and DNA primer substrates.
    Truniger V; Lázaro JM; Salas M; Blanco L
    J Mol Biol; 1998 May; 278(4):741-55. PubMed ID: 9614939
    [TBL] [Abstract][Full Text] [Related]  

  • 27. phi 29 DNA polymerase residue Leu384, highly conserved in motif B of eukaryotic type DNA replicases, is involved in nucleotide insertion fidelity.
    Truniger V; Lázaro JM; de Vega M; Blanco L; Salas M
    J Biol Chem; 2003 Aug; 278(35):33482-91. PubMed ID: 12805385
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phosphoesterase domains associated with DNA polymerases of diverse origins.
    Aravind L; Koonin EV
    Nucleic Acids Res; 1998 Aug; 26(16):3746-52. PubMed ID: 9685491
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A highly conserved lysine residue in phi29 DNA polymerase is important for correct binding of the templating nucleotide during initiation of phi29 DNA replication.
    Truniger V; Lázaro JM; Blanco L; Salas M
    J Mol Biol; 2002 Apr; 318(1):83-96. PubMed ID: 12054770
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A general structure for DNA-dependent DNA polymerases.
    Blanco L; Bernad A; Blasco MA; Salas M
    Gene; 1991 Apr; 100():27-38. PubMed ID: 2055476
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinetic pathway of pyrophosphorolysis by a retrotransposon reverse transcriptase.
    Pandey M; Patel SS; Gabriel A
    PLoS One; 2008 Jan; 3(1):e1389. PubMed ID: 18167548
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural and functional analysis of temperature-sensitive mutants of the phage phi 29 DNA polymerase.
    Blasco MA; Blanco L; Parés E; Salas M; Bernad A
    Nucleic Acids Res; 1990 Aug; 18(16):4763-70. PubMed ID: 2118623
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional domains in the bacteriophage phi 29 terminal protein for interaction with the phi 29 DNA polymerase and with DNA.
    Zaballos A; Salas M
    Nucleic Acids Res; 1989 Dec; 17(24):10353-66. PubMed ID: 2602154
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DNA polymerase from temperate phage Bam35 is endowed with processive polymerization and abasic sites translesion synthesis capacity.
    Berjón-Otero M; Villar L; de Vega M; Salas M; Redrejo-Rodríguez M
    Proc Natl Acad Sci U S A; 2015 Jul; 112(27):E3476-84. PubMed ID: 26100910
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pyrophosphorolysis-activatable oligonucleotides may facilitate detection of rare alleles, mutation scanning and analysis of chromatin structures.
    Liu Q; Sommer SS
    Nucleic Acids Res; 2002 Jan; 30(2):598-604. PubMed ID: 11788724
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DNA substrate structural requirements for the exonuclease and polymerase activities of procaryotic and phage DNA polymerases.
    Cowart M; Gibson KJ; Allen DJ; Benkovic SJ
    Biochemistry; 1989 Mar; 28(5):1975-83. PubMed ID: 2541768
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Similarity relations of DNA and RNA polymerases investigated by the principal component analysis of amino acid sequences.
    Otsuka J; Kikuchi N; Kojima S
    Biochim Biophys Acta; 1999 Oct; 1434(2):221-47. PubMed ID: 10525143
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The (I/Y)XGG motif of adenovirus DNA polymerase affects template DNA binding and the transition from initiation to elongation.
    Brenkman AB; Heideman MR; Truniger V; Salas M; van der Vliet PC
    J Biol Chem; 2001 Aug; 276(32):29846-53. PubMed ID: 11390396
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural and functional relationships between prokaryotic and eukaryotic DNA polymerases.
    Bernad A; Zaballos A; Salas M; Blanco L
    EMBO J; 1987 Dec; 6(13):4219-25. PubMed ID: 3127204
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Site-directed mutagenic analysis of viral polymerases and related proteins.
    Boyer PL; Hughes SH
    Methods Enzymol; 1996; 275():538-55. PubMed ID: 9026658
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.