BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 18504358)

  • 1. Meiotic genes and proteins in cereals.
    Jenkins G; Phillips D; Mikhailova EI; Timofejeva L; Jones RN
    Cytogenet Genome Res; 2008; 120(3-4):291-301. PubMed ID: 18504358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nuclear architecture and chromosome dynamics in the search of the pairing partner in meiosis in plants.
    Naranjo T; Corredor E
    Cytogenet Genome Res; 2008; 120(3-4):320-30. PubMed ID: 18504361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wheat, rye, and barley on the cob?
    Lev-Yadun S; Abbo S; Doebley J
    Nat Biotechnol; 2002 Apr; 20(4):337-8. PubMed ID: 11923831
    [No Abstract]   [Full Text] [Related]  

  • 4. Characterization of the wheat gene encoding a grain-specific lipid transfer protein TdPR61, and promoter activity in wheat, barley and rice.
    Kovalchuk N; Smith J; Bazanova N; Pyvovarenko T; Singh R; Shirley N; Ismagul A; Johnson A; Milligan AS; Hrmova M; Langridge P; Lopato S
    J Exp Bot; 2012 Mar; 63(5):2025-40. PubMed ID: 22213809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Role of rye chromosome 2R from wheat-rye substitution line 2R(2D)1 (Triticum aestivum L. cv. Saratovskaya 29-Secale cereale L. cv. Onokhoiskaya) in genetic regulation of meiotic restitution in wheat-rye polyhaploids].
    Silkova OG; Shchapova AI; Shumnyĭ VK
    Genetika; 2007 Jul; 43(7):971-81. PubMed ID: 17899816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strategies for the study of meiosis in rye.
    Jenkins G; Mikhailova EI; Langdon T; Tikholiz OA; Sosnikhina SP; Jones RN
    Cytogenet Genome Res; 2005; 109(1-3):221-7. PubMed ID: 15753581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Comparative molecular-genetic mapping of genomes of rye (Secale cereale L.) and other cereals].
    Malyshev SV; Korzun VN; Zaben'kova KI; Voĭlokov AV; Berner A; Kartel' NA
    Tsitol Genet; 2003; 37(5):9-20. PubMed ID: 14650323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Molecular genetic mapping of the sy1 and sy9 asynaptic genes in rye (Secale cereale L.) using microsatellite and isozyme markers].
    Malyshev SV; Dolmatovich TV; Voĭlokov AV; Sosnikhina SP; Tsvetkova NV; Lovtsius AV; Kartel' NA
    Genetika; 2009 Dec; 45(12):1634-40. PubMed ID: 20198974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in cereal functional genomics.
    Appels R; Francki M; Chibbar R
    Funct Integr Genomics; 2003 Mar; 3(1-2):1-24. PubMed ID: 12590339
    [No Abstract]   [Full Text] [Related]  

  • 10. [Genetic regulation of the centromere division in rye and wheat univalent chromosomes in dimonosomics during meiotic anaphase I].
    Silkova OG; Peresmyslova EE; Shchapova AI; Shumnyĭ VK
    Genetika; 2008 Jan; 44(1):102-11. PubMed ID: 18409392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of rye Secale cereale L. chromosomes 1R and 3R on polyembryony expression in hybrid combinations between (Hordeum vulgare L.)-Triticum aestivum L. alloplasmic recombinant lines and wheat T. aestivum L.-rye S. cereale L. substitution lines].
    Pershina LA; Rakovtseva TS; Belova LI; Deviatkina EP; Silkova OG; Kravtsova LA; Shchapova AI
    Genetika; 2007 Jul; 43(7):955-62. PubMed ID: 17899814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zinc biofortification of cereals: rice differs from wheat and barley.
    jan Stomph T; Jiang W; Struik PC
    Trends Plant Sci; 2009 Mar; 14(3):123-4. PubMed ID: 19223218
    [No Abstract]   [Full Text] [Related]  

  • 13. Agrobacterium-mediated transformation of cereals: a promising approach crossing barriers.
    Shrawat AK; Lörz H
    Plant Biotechnol J; 2006 Nov; 4(6):575-603. PubMed ID: 17309731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maize (Zea mays): a model organism for basic and applied research in plant biology.
    Strable J; Scanlon MJ
    Cold Spring Harb Protoc; 2009 Oct; 2009(10):pdb.emo132. PubMed ID: 20147033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gramene database: a hub for comparative plant genomics.
    Jaiswal P
    Methods Mol Biol; 2011; 678():247-75. PubMed ID: 20931385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative mapping of HKT genes in wheat, barley, and rice, key determinants of Na+ transport, and salt tolerance.
    Huang S; Spielmeyer W; Lagudah ES; Munns R
    J Exp Bot; 2008; 59(4):927-37. PubMed ID: 18325922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Features of the regulation of meiotic restitution in androgenic haploids of wheat-rye substitution lines 2R(2D)1, 2R(2D)3, and 6R(6A) (Triticum aestivum L., cultivar Saratovskaya 29/Secale cereale L., cultivar Onokhoiskaya)].
    Silkova OG; Dobrovol'skaia OB; Shchapova AI; Shumnyĭ VK
    Genetika; 2009 Sep; 45(9):1211-6. PubMed ID: 19824541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing the resistance of triticale by using genes from wheat and rye.
    Tyrka M; Chełkowski J
    J Appl Genet; 2004; 45(3):283-95. PubMed ID: 15306719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovery of cyclotide-like protein sequences in graminaceous crop plants: ancestral precursors of circular proteins?
    Mulvenna JP; Mylne JS; Bharathi R; Burton RA; Shirley NJ; Fincher GB; Anderson MA; Craik DJ
    Plant Cell; 2006 Sep; 18(9):2134-44. PubMed ID: 16935986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Back to the future of cereals. Genomic studies of the world's major grain crops, together with a technology called marker-assisted breeding, could yield a new green revolution.
    Goff SA; Salmeron JM
    Sci Am; 2004 Aug; 291(2):42-9. PubMed ID: 15298118
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 15.