These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 18504727)

  • 21. Ligand-assisted, copper(II) acetate-accelerated azide-alkyne cycloaddition.
    Michaels HA; Zhu L
    Chem Asian J; 2011 Oct; 6(10):2825-34. PubMed ID: 21954078
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Copper-catalyzed azide-alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(I) acetylides.
    Hein JE; Fokin VV
    Chem Soc Rev; 2010 Apr; 39(4):1302-15. PubMed ID: 20309487
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Carboxylic acid-promoted copper(I)-catalyzed azide-alkyne cycloaddition.
    Shao C; Wang X; Xu J; Zhao J; Zhang Q; Hu Y
    J Org Chem; 2010 Oct; 75(20):7002-5. PubMed ID: 20849130
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Carbohydrate-based Cu(I) stabilizing ligands and their use in the synthesis of carbohydrate-ferrocene conjugates.
    Schmidt MS; Leitner K; Welter M; Wurmthaler LA; Ringwald M
    Carbohydr Res; 2014 Mar; 387():42-5. PubMed ID: 24583527
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis of the copper chelator TGTA and evaluation of its ability to protect biomolecules from copper induced degradation during copper catalyzed azide-alkyne bioconjugation reactions.
    Ekholm FS; Pynnönen H; Vilkman A; Koponen J; Helin J; Satomaa T
    Org Biomol Chem; 2016 Jan; 14(3):849-52. PubMed ID: 26647226
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tailored ligand acceleration of the Cu-catalyzed azide-alkyne cycloaddition reaction: practical and mechanistic implications.
    Presolski SI; Hong V; Cho SH; Finn MG
    J Am Chem Soc; 2010 Oct; 132(41):14570-6. PubMed ID: 20863116
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selection of Natural Peptide Ligands for Copper-Catalyzed Azide-Alkyne Cycloaddition Catalysis.
    Aioub AG; Dahora L; Gamble K; Finn MG
    Bioconjug Chem; 2017 Jun; 28(6):1693-1701. PubMed ID: 28504875
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinetic Resolution of Cyclic Secondary Azides, Using an Enantioselective Copper-Catalyzed Azide-Alkyne Cycloaddition.
    Alexander JR; Ott AA; Liu EC; Topczewski JJ
    Org Lett; 2019 Jun; 21(11):4355-4358. PubMed ID: 31117717
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tricks with clicks: modification of peptidomimetic oligomers via copper-catalyzed azide-alkyne [3 + 2] cycloaddition.
    Holub JM; Kirshenbaum K
    Chem Soc Rev; 2010 Apr; 39(4):1325-37. PubMed ID: 20309489
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Relative performance of alkynes in copper-catalyzed azide-alkyne cycloaddition.
    Kislukhin AA; Hong VP; Breitenkamp KE; Finn MG
    Bioconjug Chem; 2013 Apr; 24(4):684-9. PubMed ID: 23566039
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 'Click' cycloaddition catalysts: copper(I) and copper(II) tris(triazolylmethyl)amine complexes.
    Donnelly PS; Zanatta SD; Zammit SC; White JM; Williams SJ
    Chem Commun (Camb); 2008 Jun; (21):2459-61. PubMed ID: 18491014
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ligand-accelerated Cu-catalyzed azide-alkyne cycloaddition: a mechanistic report.
    Rodionov VO; Presolski SI; Díaz DD; Fokin VV; Finn MG
    J Am Chem Soc; 2007 Oct; 129(42):12705-12. PubMed ID: 17914817
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis of (1,2,3-triazol-4-yl)methyl Phosphinates and (1,2,3-Triazol-4-yl)methyl Phosphates by Copper-Catalyzed Azide-Alkyne Cycloaddition.
    Tripolszky A; Németh K; Szabó PT; Bálint E
    Molecules; 2019 May; 24(11):. PubMed ID: 31159301
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A concomitant allylic azide rearrangement/intramolecular azide-alkyne cycloaddition sequence.
    Vekariya RH; Liu R; Aubé J
    Org Lett; 2014 Apr; 16(7):1844-7. PubMed ID: 24635056
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A flow platform for degradation-free CuAAC bioconjugation.
    Hatit MZC; Reichenbach LF; Tobin JM; Vilela F; Burley GA; Watson AJB
    Nat Commun; 2018 Oct; 9(1):4021. PubMed ID: 30275543
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The CuAAC: Principles, Homogeneous and Heterogeneous Catalysts, and Novel Developments and Applications.
    Neumann S; Biewend M; Rana S; Binder WH
    Macromol Rapid Commun; 2020 Jan; 41(1):e1900359. PubMed ID: 31631449
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Squish and CuAAC: additive-free covalent monolayers of discrete molecules in seconds.
    Pellow MA; Stack TD; Chidsey CE
    Langmuir; 2013 May; 29(18):5383-7. PubMed ID: 23551032
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Labeling live cells by copper-catalyzed alkyne--azide click chemistry.
    Hong V; Steinmetz NF; Manchester M; Finn MG
    Bioconjug Chem; 2010 Oct; 21(10):1912-6. PubMed ID: 20886827
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A tris(benzyltriazolemethyl)amine-based cage as a CuAAC ligand tolerant to exogeneous bulky nucleophiles.
    Qiu G; Nava P; Martinez A; Colomban C
    Chem Commun (Camb); 2021 Mar; 57(18):2281-2284. PubMed ID: 33533356
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Well-defined diimine copper(I) complexes as catalysts in click azide-alkyne cycloaddition reactions.
    Barta JM; Díez-González S
    Molecules; 2013 Jul; 18(8):8919-28. PubMed ID: 23896617
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.