BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

731 related articles for article (PubMed ID: 18504778)

  • 1. Fragment Molecular Orbital method-based Molecular Dynamics (FMO-MD) as a simulator for chemical reactions in explicit solvation.
    Komeiji Y; Ishikawa T; Mochizuki Y; Yamataka H; Nakano T
    J Comput Chem; 2009 Jan; 30(1):40-50. PubMed ID: 18504778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A combined effective fragment potential-fragment molecular orbital method. I. The energy expression and initial applications.
    Nagata T; Fedorov DG; Kitaura K; Gordon MS
    J Chem Phys; 2009 Jul; 131(2):024101. PubMed ID: 19603964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FMO-MD simulations on the hydration of formaldehyde in water solution with constraint dynamics.
    Sato M; Yamataka H; Komeiji Y; Mochizuki Y
    Chemistry; 2012 Jul; 18(31):9714-21. PubMed ID: 22815219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An improved multistate empirical valence bond model for aqueous proton solvation and transport.
    Wu Y; Chen H; Wang F; Paesani F; Voth GA
    J Phys Chem B; 2008 Jan; 112(2):467-82. PubMed ID: 17999484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solvatochromic shifts of uracil and cytosine using a combined multireference configuration interaction/molecular dynamics approach and the fragment molecular orbital method.
    Kistler KA; Matsika S
    J Phys Chem A; 2009 Nov; 113(45):12396-403. PubMed ID: 19505083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Halothane solvation in water and organic solvents from molecular simulations with new polarizable potential function.
    Subbotina JO; Johannes J; Lev B; Noskov SY
    J Phys Chem B; 2010 May; 114(19):6401-8. PubMed ID: 20411978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Importance of polarization in quantum mechanics/molecular mechanics descriptions of electronic excited states: NaI(H2O)n photodissociation dynamics as a case study.
    Koch DM; Peslherbe GH
    J Phys Chem B; 2008 Jan; 112(2):636-49. PubMed ID: 18183959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Free energy profiles of amino acid side chain analogs near water-vapor interface obtained via MD simulations.
    Shaytan AK; Ivanov VA; Shaitan KV; Khokhlov AR
    J Comput Chem; 2010 Jan; 31(1):204-16. PubMed ID: 19421988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Linear response theory: an alternative to PB and GB methods for the analysis of molecular dynamics trajectories?
    Morreale A; de la Cruz X; Meyer T; GelpĂ­ JL; Luque FJ; Orozco M
    Proteins; 2004 Nov; 57(3):458-67. PubMed ID: 15382247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid QM/MM study of thio effects in transphosphorylation reactions: the role of solvation.
    Gregersen BA; Lopez X; York DM
    J Am Chem Soc; 2004 Jun; 126(24):7504-13. PubMed ID: 15198597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solvation shell structure of cyclooctylpyranone in water solvent and its comparative structure, dynamics and dipole moment in HIV protease.
    Arul Murugan N; Chandra Jha P; Agren H
    Phys Chem Chem Phys; 2009 Aug; 11(30):6482-9. PubMed ID: 19809680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy gradients in combined fragment molecular orbital and polarizable continuum model (FMO/PCM) calculation.
    Li H; Fedorov DG; Nagata T; Kitaura K; Jensen JH; Gordon MS
    J Comput Chem; 2010 Mar; 31(4):778-90. PubMed ID: 19569184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Absolute free-energy calculations of liquids using a harmonic reference state.
    Tyka MD; Sessions RB; Clarke AR
    J Phys Chem B; 2007 Aug; 111(32):9571-80. PubMed ID: 17655215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Application of fragment molecular orbital (FMO) method to biomacromolecules].
    Nakano T
    Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Hokoku; 2010; (128):34-8. PubMed ID: 21381393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An efficient mean solvation force model for use in molecular dynamics simulations of proteins in aqueous solution.
    Fraternali F; Van Gunsteren WF
    J Mol Biol; 1996 Mar; 256(5):939-48. PubMed ID: 8601844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Incorporating receptor flexibility in the molecular design of protein interfaces.
    Li L; Liang S; Pilcher MM; Meroueh SO
    Protein Eng Des Sel; 2009 Sep; 22(9):575-86. PubMed ID: 19643976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulations of the aqueous interface with the [BMI][PF6] ionic liquid: Comparison of different solvent models.
    Chevrot G; Schurhammer R; Wipff G
    Phys Chem Chem Phys; 2006 Sep; 8(36):4166-74. PubMed ID: 16971984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Geometry optimization based on linear response free energy with quantum mechanical/molecular mechanical method: applications to Menshutkin-type and Claisen rearrangement reactions in aqueous solution.
    Higashi M; Hayashi S; Kato S
    J Chem Phys; 2007 Apr; 126(14):144503. PubMed ID: 17444719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox entropy of plastocyanin: developing a microscopic view of mesoscopic polar solvation.
    LeBard DN; Matyushov DV
    J Chem Phys; 2008 Apr; 128(15):155106. PubMed ID: 18433287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Change in a protein's electronic structure induced by an explicit solvent: an ab initio fragment molecular orbital study of ubiquitin.
    Komeiji Y; Ishida T; Fedorov DG; Kitaura K
    J Comput Chem; 2007 Jul; 28(10):1750-62. PubMed ID: 17340606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.