These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 18504820)

  • 41. Effect of expiratory muscle fatigue on exercise tolerance and locomotor muscle fatigue in healthy humans.
    Taylor BJ; Romer LM
    J Appl Physiol (1985); 2008 May; 104(5):1442-51. PubMed ID: 18323465
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Complex systems model of fatigue: integrative homoeostatic control of peripheral physiological systems during exercise in humans.
    Lambert EV; St Clair Gibson A; Noakes TD
    Br J Sports Med; 2005 Jan; 39(1):52-62. PubMed ID: 15618343
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cardiac output, oxygen consumption and muscle oxygen delivery in submaximal exercise. Normal and low O2 states.
    Wolff CB
    Adv Exp Med Biol; 2003; 510():279-84. PubMed ID: 12580441
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Critical power: implications for determination of V˙O2max and exercise tolerance.
    Jones AM; Vanhatalo A; Burnley M; Morton RH; Poole DC
    Med Sci Sports Exerc; 2010 Oct; 42(10):1876-90. PubMed ID: 20195180
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Neural control of force output during maximal and submaximal exercise.
    St Clair Gibson A; Lambert ML; Noakes TD
    Sports Med; 2001; 31(9):637-50. PubMed ID: 11508520
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Whole body fatigue and critical power: a physiological interpretation.
    Walsh ML
    Sports Med; 2000 Mar; 29(3):153-66. PubMed ID: 10739266
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Contribution of diaphragmatic power output to exercise-induced diaphragm fatigue.
    Babcock MA; Pegelow DF; McClaran SR; Suman OE; Dempsey JA
    J Appl Physiol (1985); 1995 May; 78(5):1710-9. PubMed ID: 7649904
    [TBL] [Abstract][Full Text] [Related]  

  • 48. CO2 Clamping, Peripheral and Central Fatigue during Hypoxic Knee Extensions in Men.
    Rupp T; Mallouf Tle R; Perrey S; Wuyam B; Millet GY; Verges S
    Med Sci Sports Exerc; 2015 Dec; 47(12):2513-24. PubMed ID: 26110698
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Continuous non-invasive cardiac output monitoring during exercise: validation of electrical cardiometry with Fick and thermodilution methods.
    Liu YH; Dhakal BP; Keesakul C; Kacmarek RM; Lewis GD; Jiang Y
    Br J Anaesth; 2016 Jul; 117(1):129-31. PubMed ID: 27317712
    [No Abstract]   [Full Text] [Related]  

  • 50. Effects of exercise-induced arterial hypoxaemia on limb muscle fatigue and performance.
    Romer LM; Dempsey JA
    Clin Exp Pharmacol Physiol; 2006 Apr; 33(4):391-4. PubMed ID: 16620307
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Run sprint interval training improves aerobic performance but not maximal cardiac output.
    Macpherson RE; Hazell TJ; Olver TD; Paterson DH; Lemon PW
    Med Sci Sports Exerc; 2011 Jan; 43(1):115-22. PubMed ID: 20473222
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Solving the Fick principle using whole body measurements does not discriminate "central" and "peripheral" adaptations to training.
    Poole DC; Musch TI
    Eur J Appl Physiol; 2008 May; 103(1):117-9. PubMed ID: 18188582
    [No Abstract]   [Full Text] [Related]  

  • 53. Neuromuscular function during prolonged pedalling exercise at different cadences.
    Sarre G; Lepers R
    Acta Physiol Scand; 2005 Dec; 185(4):321-8. PubMed ID: 16266373
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Physiological consequences of a high work of breathing during heavy exercise in humans.
    Guenette JA; Sheel AW
    J Sci Med Sport; 2007 Dec; 10(6):341-50. PubMed ID: 17418638
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Neuromuscular fatigue during repeated sprint exercise: underlying physiology and methodological considerations.
    Collins BW; Pearcey GEP; Buckle NCM; Power KE; Button DC
    Appl Physiol Nutr Metab; 2018 Nov; 43(11):1166-1175. PubMed ID: 29701482
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In health and in a normoxic environment, VO2 max is/is not limited primarily by cardiac output and locomotor muscle blood flow.
    Connes P; Yalcin O; Baskurt O; Brun JF; Hardeman M
    J Appl Physiol (1985); 2006 Jun; 100(6):2099. PubMed ID: 16714417
    [No Abstract]   [Full Text] [Related]  

  • 57. Evaluation of noninvasive exercise cardiac output determination in chronic heart failure patients: a proposal of a new diagnostic and prognostic method.
    Cattadori G; Salvioni E; Gondoni E; Agostoni P
    J Cardiovasc Med (Hagerstown); 2011 Jan; 12(1):19-27. PubMed ID: 20975571
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Neuromuscular Fatigue during Prolonged Exercise in Hypoxia.
    Jubeau M; Rupp T; Temesi J; Perrey S; Wuyam B; Millet GY; Verges S
    Med Sci Sports Exerc; 2017 Mar; 49(3):430-439. PubMed ID: 27753741
    [TBL] [Abstract][Full Text] [Related]  

  • 59. New physiological insights into exercise-induced diaphragmatic fatigue.
    Kabitz HJ; Walker D; Schwoerer A; Sonntag F; Walterspacher S; Roecker K; Windisch W
    Respir Physiol Neurobiol; 2007 Aug; 158(1):88-96. PubMed ID: 17560177
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The physiology of submaximal exercise: The steady state concept.
    Ferretti G; Fagoni N; Taboni A; Bruseghini P; Vinetti G
    Respir Physiol Neurobiol; 2017 Dec; 246():76-85. PubMed ID: 28818484
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.