These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 18504821)

  • 21. Evidence for complex system integration and dynamic neural regulation of skeletal muscle recruitment during exercise in humans.
    St Clair Gibson A; Noakes TD
    Br J Sports Med; 2004 Dec; 38(6):797-806. PubMed ID: 15562183
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Power reserve following ramp-incremental cycling to exhaustion: implications for muscle fatigue and function.
    Hodgson MD; Keir DA; Copithorne DB; Rice CL; Kowalchuk JM
    J Appl Physiol (1985); 2018 Aug; 125(2):304-312. PubMed ID: 29698107
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Whole body fatigue and critical power: a physiological interpretation.
    Walsh ML
    Sports Med; 2000 Mar; 29(3):153-66. PubMed ID: 10739266
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Commentaries on viewpoint: evidence that reduced skeletal muscle recruitment explains the lactate paradox during exercise at high altitude.
    Marino FE
    J Appl Physiol (1985); 2009 Feb; 106(2):742-3. PubMed ID: 19244611
    [No Abstract]   [Full Text] [Related]  

  • 25. Commentaries on viewpoint: evidence that reduced skeletal muscle recruitment explains the lactate paradox during exercise at high altitude.
    Nybo L
    J Appl Physiol (1985); 2009 Feb; 106(2):741. PubMed ID: 19244653
    [No Abstract]   [Full Text] [Related]  

  • 26. Commentaries on viewpoint: evidence that reduced skeletal muscle recruitment explains the lactate paradox during exercise at high altitude.
    Richalet JP
    J Appl Physiol (1985); 2009 Feb; 106(2):743-4. PubMed ID: 19244657
    [No Abstract]   [Full Text] [Related]  

  • 27. Last word on viewpoint: evidence that reduced skeletal muscle recruitment explains the lactate paradox during exercise at high altitude.
    Noakes TD
    J Appl Physiol (1985); 2009 Feb; 106(2):745. PubMed ID: 19196919
    [No Abstract]   [Full Text] [Related]  

  • 28. Critical Power: An Important Fatigue Threshold in Exercise Physiology.
    Poole DC; Burnley M; Vanhatalo A; Rossiter HB; Jones AM
    Med Sci Sports Exerc; 2016 Nov; 48(11):2320-2334. PubMed ID: 27031742
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Slow component of VO2 kinetics: mechanistic bases and practical applications.
    Jones AM; Grassi B; Christensen PM; Krustrup P; Bangsbo J; Poole DC
    Med Sci Sports Exerc; 2011 Nov; 43(11):2046-62. PubMed ID: 21552162
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The magnitude of neuromuscular fatigue is not intensity dependent when cycling above critical power but relates to aerobic and anaerobic capacities.
    Schäfer LU; Hayes M; Dekerle J
    Exp Physiol; 2019 Feb; 104(2):209-219. PubMed ID: 30468691
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oxygen uptake and muscle activity limitations during stepping on a stair machine at three different climbing speeds.
    Halder A; Gao C; Miller M; Kuklane K
    Ergonomics; 2018 Oct; 61(10):1382-1394. PubMed ID: 29785880
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Effect of change of plasma K+ and pH value induced by exercise on muscle fatigue and surface EMG].
    He W; Wang MZ; Wang ZM
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2005 Jan; 36(1):112-4, 118. PubMed ID: 15702797
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of ischaemic preconditioning on central and peripheral fatiguing mechanisms in humans following sustained maximal isometric exercise.
    Halley SL; Marshall P; Siegler JC
    Exp Physiol; 2018 Jul; 103(7):976-984. PubMed ID: 29704398
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of exercise-induced arterial hypoxaemia on limb muscle fatigue and performance.
    Romer LM; Dempsey JA
    Clin Exp Pharmacol Physiol; 2006 Apr; 33(4):391-4. PubMed ID: 16620307
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of O2 supply in muscle fatigue.
    Hepple RT
    Can J Appl Physiol; 2002 Feb; 27(1):56-69. PubMed ID: 11880691
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Limitation of fatigue and performance during exercise: the brain-muscle interaction.
    Blain GM; Hureau TJ
    Exp Physiol; 2017 Jan; 102(1):3-4. PubMed ID: 28044405
    [No Abstract]   [Full Text] [Related]  

  • 37. Exercise-induced metabolic perturbation: all roads lead to Rome.
    Amann M
    Exp Physiol; 2010 Jul; 95(7):765-6. PubMed ID: 20554925
    [No Abstract]   [Full Text] [Related]  

  • 38. Effect of expiratory muscle fatigue on exercise tolerance and locomotor muscle fatigue in healthy humans.
    Taylor BJ; Romer LM
    J Appl Physiol (1985); 2008 May; 104(5):1442-51. PubMed ID: 18323465
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Commentaries on viewpoint: maximal Na⁺-K⁺-ATPase activity is upregulated in association with muscle activity.
    Broch-Lips M; de Paoli F; Pedersen TH; Nielsen OB; Nielsen OB; Pedersen TH; de Paoli F; Broch-Lips M; Benziane B; Chibalin AV; Pirkmajer S; McKenna MJ; Goodman CA
    J Appl Physiol (1985); 2012 Jun; 112(12):2124-6. PubMed ID: 22707672
    [No Abstract]   [Full Text] [Related]  

  • 40. Cerebral oxygenation decreases but does not impair performance during self-paced, strenuous exercise.
    Billaut F; Davis JM; Smith KJ; Marino FE; Noakes TD
    Acta Physiol (Oxf); 2010 Apr; 198(4):477-86. PubMed ID: 19912150
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.