These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 18504951)

  • 1. Scenario projections for future market potentials of biobased bulk chemicals.
    Dornburg V; Hermann BG; Patel MK
    Environ Sci Technol; 2008 Apr; 42(7):2261-7. PubMed ID: 18504951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Sustainable production of bulk chemicals by application of "white biotechnology"].
    Patel MK; Dornburg V; Hermann BG; Shen L; van Overbeek L
    Sheng Wu Gong Cheng Xue Bao; 2008 Dec; 24(12):2022-6. PubMed ID: 19306570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Producing bio-based bulk chemicals using industrial biotechnology saves energy and combats climate change.
    Hermann BG; Blok K; Patel MK
    Environ Sci Technol; 2007 Nov; 41(22):7915-21. PubMed ID: 18075108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. White biotechnology: differences in US and EU approaches?
    Lorenz P; Zinke H
    Trends Biotechnol; 2005 Dec; 23(12):570-4. PubMed ID: 16253362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biobased chemicals: the convergence of green chemistry with industrial biotechnology.
    Philp JC; Ritchie RJ; Allan JE
    Trends Biotechnol; 2013 Apr; 31(4):219-22. PubMed ID: 23394962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Life cycle risks for human health: a comparison of petroleum versus bio-based production of five bulk organic chemicals.
    Roes AL; Patel MK
    Risk Anal; 2007 Oct; 27(5):1311-21. PubMed ID: 18076498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uncertainty in the Life Cycle Greenhouse Gas Emissions from U.S. Production of Three Biobased Polymer Families.
    Posen ID; Jaramillo P; Griffin WM
    Environ Sci Technol; 2016 Mar; 50(6):2846-58. PubMed ID: 26895173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Including public perspectives in industrial biotechnology and the biobased economy.
    Paula L; Birrer F
    J Agric Environ Ethics; 2006; 19(3):253-67. PubMed ID: 17061382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitigating the environmental impacts of milk production via anaerobic digestion of manure: case study of a dairy farm in the Po Valley.
    Battini F; Agostini A; Boulamanti AK; Giuntoli J; Amaducci S
    Sci Total Environ; 2014 May; 481():196-208. PubMed ID: 24598150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated control of emission reductions, energy-saving, and cost-benefit using a multi-objective optimization technique in the pulp and paper industry.
    Wen Z; Xu C; Zhang X
    Environ Sci Technol; 2015 Mar; 49(6):3636-43. PubMed ID: 25692210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The potential of bio-methane as bio-fuel/bio-energy for reducing greenhouse gas emissions: a qualitative assessment for Europe in a life cycle perspective.
    Tilche A; Galatola M
    Water Sci Technol; 2008; 57(11):1683-92. PubMed ID: 18547917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of the greenhouse effect impact of technologies used for energy recovery from municipal waste: a case for England.
    Papageorgiou A; Barton JR; Karagiannidis A
    J Environ Manage; 2009 Jul; 90(10):2999-3012. PubMed ID: 19482412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards the development of a biobased economy in Europe and India.
    Pant D; Misra S; Nizami AS; Rehan M; van Leeuwen R; Tabacchioni S; Goel R; Sarma P; Bakker R; Sharma N; Kwant K; Diels L; Elst K
    Crit Rev Biotechnol; 2019 Sep; 39(6):779-799. PubMed ID: 31137977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biotechnology for Chemical Production: Challenges and Opportunities.
    Burk MJ; Van Dien S
    Trends Biotechnol; 2016 Mar; 34(3):187-190. PubMed ID: 26683567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Innovations in papermaking: an LCA of printing and writing paper from conventional and high yield pulp.
    Manda BM; Blok K; Patel MK
    Sci Total Environ; 2012 Nov; 439():307-20. PubMed ID: 23089556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatially explicit LCA analysis of biodiversity losses due to different bioenergy policies in the European Union.
    Di Fulvio F; Forsell N; Korosuo A; Obersteiner M; Hellweg S
    Sci Total Environ; 2019 Feb; 651(Pt 1):1505-1516. PubMed ID: 30360280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Today's and tomorrow's bio-based bulk chemicals from white biotechnology: a techno-economic analysis.
    Hermann BG; Patel M
    Appl Biochem Biotechnol; 2007 Mar; 136(3):361-88. PubMed ID: 17625239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellulosic ethanol from municipal solid waste: a case study of the economic, energy, and greenhouse gas impacts in California.
    Chester M; Martin E
    Environ Sci Technol; 2009 Jul; 43(14):5183-9. PubMed ID: 19708339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy and greenhouse gas balances for a solid waste incineration plant: a case study.
    Brinck K; Poulsen TG; Skov H
    Waste Manag Res; 2011 Oct; 29(10 Suppl):13-9. PubMed ID: 21746759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Life-cycle fossil energy consumption and greenhouse gas emissions of bioderived chemicals and their conventional counterparts.
    Adom F; Dunn JB; Han J; Sather N
    Environ Sci Technol; 2014 Dec; 48(24):14624-31. PubMed ID: 25380298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.