These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 18504965)
1. Reductive dissolution of Pu(IV) by Clostridium sp. under anaerobic conditions. Francis AJ; Dodge CJ; Gillow JB Environ Sci Technol; 2008 Apr; 42(7):2355-60. PubMed ID: 18504965 [TBL] [Abstract][Full Text] [Related]
2. Microbial mobilization of plutonium and other actinides from contaminated soil. Francis AJ; Dodge CJ J Environ Radioact; 2015 Dec; 150():277-85. PubMed ID: 26406590 [TBL] [Abstract][Full Text] [Related]
3. Bioreduction of uranium(VI) complexed with citric acid by Clostridia affects its structure and solubility. Francis AJ; Dodge CJ Environ Sci Technol; 2008 Nov; 42(22):8277-82. PubMed ID: 19068806 [TBL] [Abstract][Full Text] [Related]
4. Humic acids facilitated microbial reduction of polymeric Pu(IV) under anaerobic conditions. Xie J; Liang W; Lin J; Zhou X; Li M Sci Total Environ; 2018 Jan; 610-611():1321-1328. PubMed ID: 28851152 [TBL] [Abstract][Full Text] [Related]
5. Plutonium(IV) reduction by the metal-reducing bacteria Geobacter metallireducens GS15 and Shewanella oneidensis MR1. Boukhalfa H; Icopini GA; Reilly SD; Neu MP Appl Environ Microbiol; 2007 Sep; 73(18):5897-903. PubMed ID: 17644643 [TBL] [Abstract][Full Text] [Related]
6. Influence of sources on plutonium mobility and oxidation state transformations in vadose zone sediments. Kaplan DI; Powell BA; Duff MC; Demirkanli DI; Denham M; Fjeld RA; Molz FJ Environ Sci Technol; 2007 Nov; 41(21):7417-23. PubMed ID: 18044520 [TBL] [Abstract][Full Text] [Related]
7. Plutonium(VI) accumulation and reduction by lichen biomass: correlation with U(VI). Ohnuki T; Aoyagi H; Kitatsuji Y; Samadfam M; Kimura Y; William Purvis O J Environ Radioact; 2004; 77(3):339-53. PubMed ID: 15381325 [TBL] [Abstract][Full Text] [Related]
8. Hydrolysis of trivalent plutonium and solubility of Pu(OH) Cho HR; Youn YS; Jung EC; Cha W Dalton Trans; 2016 Dec; 45(48):19449-19457. PubMed ID: 27885365 [TBL] [Abstract][Full Text] [Related]
9. Heterogeneous reduction of PuO₂ with Fe(II): importance of the Fe(III) reaction product. Felmy AR; Moore DA; Rosso KM; Qafoku O; Rai D; Buck EC; Ilton ES Environ Sci Technol; 2011 May; 45(9):3952-8. PubMed ID: 21469710 [TBL] [Abstract][Full Text] [Related]
10. Biotic and abiotic reduction and solubilization of Pu(IV)O₂•xH₂O(am) as affected by anthraquinone-2,6-disulfonate (AQDS) and ethylenediaminetetraacetate (EDTA). Plymale AE; Bailey VL; Fredrickson JK; Heald SM; Buck EC; Shi L; Wang Z; Resch CT; Moore DA; Bolton H Environ Sci Technol; 2012 Feb; 46(4):2132-40. PubMed ID: 22276620 [TBL] [Abstract][Full Text] [Related]
11. Anaerobic microbial dissolution of transition and heavy metal oxides. Francis AJ; Dodge CJ Appl Environ Microbiol; 1988 Apr; 54(4):1009-14. PubMed ID: 16347595 [TBL] [Abstract][Full Text] [Related]
12. Impact of Ca(II) on the aqueous speciation, redox behavior, and environmental mobility of Pu(IV) in the presence of EDTA. DiBlasi NA; Tasi AG; Gaona X; Fellhauer D; Dardenne K; Rothe J; Reed DT; Hixon AE; Altmaier M Sci Total Environ; 2021 Aug; 783():146993. PubMed ID: 33866175 [TBL] [Abstract][Full Text] [Related]
13. Plutonium oxidation and subsequent reduction by Mn(IV) minerals in Yucca Mountain tuff. Powell BA; Duff MC; Kaplan DI; Fjeld RA; Newville M; Hunter DB; Bertsch PM; Coates JT; Eng P; Rivers ML; Serkiz SM; Sutton SR; Triay IR; Vaniman DT Environ Sci Technol; 2006 Jun; 40(11):3508-14. PubMed ID: 16786687 [TBL] [Abstract][Full Text] [Related]
14. Bacterial Pu(V) reduction in the absence and presence of Fe(III)-NTA: modeling and experimental approach. Deo RP; Rittmann BE; Reed DT Biodegradation; 2011 Sep; 22(5):921-9. PubMed ID: 21234648 [TBL] [Abstract][Full Text] [Related]
15. Influence of pH on plutonium desorption/solubilization from sediment. Kaplan DI; Powell BA; Gumapas L; Coates JT; Fjeld RA; Diprete DP Environ Sci Technol; 2006 Oct; 40(19):5937-42. PubMed ID: 17051782 [TBL] [Abstract][Full Text] [Related]
16. Anaerobic Dissolution Rates of U(IV)-Oxide by Abiotic and Nitrate-Dependent Bacterial Pathways. Asta MP; Beller HR; O'Day PA Environ Sci Technol; 2020 Jul; 54(13):8010-8021. PubMed ID: 32469205 [TBL] [Abstract][Full Text] [Related]
17. Direct determination of the intracellular oxidation state of plutonium. Gorman-Lewis D; Aryal BP; Paunesku T; Vogt S; Lai B; Woloschak GE; Jensen MP Inorg Chem; 2011 Aug; 50(16):7591-7. PubMed ID: 21755934 [TBL] [Abstract][Full Text] [Related]
18. Effects of humic acid concentration on the microbially-mediated reductive solubilization of Pu(IV) polymers. Xie J; Han X; Wang W; Zhou X; Lin J J Hazard Mater; 2017 Oct; 339():347-353. PubMed ID: 28668752 [TBL] [Abstract][Full Text] [Related]
19. Chemical speciation and association of plutonium with bacteria, kaolinite clay, and their mixture. Ohnuki T; Yoshida T; Ozaki T; Kozai N; Sakamoto F; Nankawa T; Suzuki Y; Francis AJ Environ Sci Technol; 2007 May; 41(9):3134-9. PubMed ID: 17539516 [TBL] [Abstract][Full Text] [Related]
20. Sorption and Redox Speciation of Plutonium at the Illite Surface. Banik NL; Marsac R; Lützenkirchen J; Diascorn A; Bender K; Marquardt CM; Geckeis H Environ Sci Technol; 2016 Feb; 50(4):2092-8. PubMed ID: 26793996 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]