These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 18504989)

  • 21. Release of Sulfur and Nitrogen during Co-pyrolysis of Coal and Biomass under Inert Atmosphere.
    Li L; Liu G; Li Y; Zhu Z; Xu H; Chen J; Ren X
    ACS Omega; 2020 Nov; 5(46):30001-30010. PubMed ID: 33251436
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pyrolysis of fast-growing aquatic biomass -Lemna minor (duckweed): Characterization of pyrolysis products.
    Muradov N; Fidalgo B; Gujar AC; T-Raissi A
    Bioresour Technol; 2010 Nov; 101(21):8424-8. PubMed ID: 20598878
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Predicting gaseous emissions from small-scale combustion of agricultural biomass fuels.
    Fournel S; Marcos B; Godbout S; Heitz M
    Bioresour Technol; 2015 Mar; 179():165-172. PubMed ID: 25543541
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calcium-catalyzed pyrolysis of lignocellulosic biomass components.
    Case PA; Truong C; Wheeler MC; DeSisto WJ
    Bioresour Technol; 2015 Sep; 192():247-52. PubMed ID: 26038329
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Emissions from a fast-pyrolysis bio-oil fired boiler: Comparison of health-related characteristics of emissions from bio-oil, fossil oil and wood.
    Sippula O; Huttunen K; Hokkinen J; Kärki S; Suhonen H; Kajolinna T; Kortelainen M; Karhunen T; Jalava P; Uski O; Yli-Pirilä P; Hirvonen MR; Jokiniemi J
    Environ Pollut; 2019 May; 248():888-897. PubMed ID: 30856504
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simultaneous absorption of NO and SO2 into hexamminecobalt(II)/iodide solution.
    Long XL; Xiao WD; Yuan WK
    Chemosphere; 2005 May; 59(6):811-7. PubMed ID: 15811409
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Influence and mechanism of calcium-based desulfurizer on NO conversion in fluidized bed of coal].
    Zhang D; Chi Y; Yan J; Li X; Cao Y; Cen K
    Huan Jing Ke Xue; 2003 Jan; 24(1):143-6. PubMed ID: 12708307
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mineral dust and NOx promote the conversion of SO2 to sulfate in heavy pollution days.
    He H; Wang Y; Ma Q; Ma J; Chu B; Ji D; Tang G; Liu C; Zhang H; Hao J
    Sci Rep; 2014 Feb; 4():4172. PubMed ID: 24566871
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The use of vacuum ultraviolet irradiation to oxidize SO₂ and NOx for simultaneous desulfurization and denitrification.
    Ye J; Shang J; Li Q; Xu W; Liu J; Feng X; Zhu T
    J Hazard Mater; 2014 Apr; 271():89-97. PubMed ID: 24632363
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simultaneous wet desulfurization and denitration by an oxidant absorbent of NaClO
    Wang Z; Lun L; Tan Z; Zhang Y; Li Q
    Environ Sci Pollut Res Int; 2019 Oct; 26(28):29032-29040. PubMed ID: 31388956
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bio-oil production via catalytic pyrolysis of Anchusa azurea: Effects of operating conditions on product yields and chromatographic characterization.
    Aysu T; Durak H; Güner S; Bengü AŞ; Esim N
    Bioresour Technol; 2016 Apr; 205():7-14. PubMed ID: 26800388
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of the previous composting on volatiles production during biomass pyrolysis.
    Barneto AG; Ariza Carmona J; Díaz Blanco MJ
    J Phys Chem A; 2010 Mar; 114(11):3756-63. PubMed ID: 19642694
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reaction behavior of SO2 in the sintering process with flue gas recirculation.
    Yu ZY; Fan XH; Gan M; Chen XL; Chen Q; Huang YS
    J Air Waste Manag Assoc; 2016 Jul; 66(7):687-97. PubMed ID: 27043363
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simultaneous removal of NO and SO
    Adewuyi YG; Sakyi NY; Arif Khan M
    Chemosphere; 2018 Feb; 193():1216-1225. PubMed ID: 29874751
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biological removal of NOx from flue gas.
    Kumaraswamy R; Muyzer G; Kuenen JG; Loosdrecht MC
    Water Sci Technol; 2004; 50(6):9-15. PubMed ID: 15536984
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Control of Nitrogen Oxide Emissions by Hydrogen Peroxide-Enhanced Gas-Phase Oxidation Of Nitric Oxide.
    Kasper JM; Clausen CA; Cooper CD
    J Air Waste Manag Assoc; 1996 Feb; 46(2):127-133. PubMed ID: 28081413
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simultaneous SO2 and NO removal from flue gas based on TiO2 photocatalytic oxidation.
    Zhao Y; Han J; Shao Y; Feng Y
    Environ Technol; 2009 Dec; 30(14):1555-63. PubMed ID: 20184000
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simultaneous removal of NOx and SO2 from flue gas using combined Na2SO3 assisted electrochemical reduction and direct electrochemical reduction.
    Guo Q; He Y; Sun T; Wang Y; Jia J
    J Hazard Mater; 2014 Jul; 276():371-6. PubMed ID: 24910913
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Catalytic pyrolysis of Alcea pallida stems in a fixed-bed reactor for production of liquid bio-fuels.
    Aysu T
    Bioresour Technol; 2015 Sep; 191():253-62. PubMed ID: 26000835
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Do FeCl
    Liu J; Huang L; Zou H; Xie W; Evrendilek DE; Luo G; Ninomiya Y
    J Hazard Mater; 2021 Jul; 413():125334. PubMed ID: 33626471
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.