These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 18505755)

  • 1. Beyond the sarcomere: CSRP3 mutations cause hypertrophic cardiomyopathy.
    Geier C; Gehmlich K; Ehler E; Hassfeld S; Perrot A; Hayess K; Cardim N; Wenzel K; Erdmann B; Krackhardt F; Posch MG; Osterziel KJ; Bublak A; Nägele H; Scheffold T; Dietz R; Chien KR; Spuler S; Fürst DO; Nürnberg P; Ozcelik C
    Hum Mol Genet; 2008 Sep; 17(18):2753-65. PubMed ID: 18505755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutant Muscle LIM Protein C58G causes cardiomyopathy through protein depletion.
    Ehsan M; Kelly M; Hooper C; Yavari A; Beglov J; Bellahcene M; Ghataorhe K; Poloni G; Goel A; Kyriakou T; Fleischanderl K; Ehler E; Makeyev E; Lange S; Ashrafian H; Redwood C; Davies B; Watkins H; Gehmlich K
    J Mol Cell Cardiol; 2018 Aug; 121():287-296. PubMed ID: 30048712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genotype-phenotype relationships involving hypertrophic cardiomyopathy-associated mutations in titin, muscle LIM protein, and telethonin.
    Bos JM; Poley RN; Ny M; Tester DJ; Xu X; Vatta M; Towbin JA; Gersh BJ; Ommen SR; Ackerman MJ
    Mol Genet Metab; 2006 May; 88(1):78-85. PubMed ID: 16352453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MLP-deficient human pluripotent stem cell derived cardiomyocytes develop hypertrophic cardiomyopathy and heart failure phenotypes due to abnormal calcium handling.
    Li X; Lu WJ; Li Y; Wu F; Bai R; Ma S; Dong T; Zhang H; Lee AS; Wang Y; Lan F
    Cell Death Dis; 2019 Aug; 10(8):610. PubMed ID: 31406109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CSRP3, p.Arg122*, is responsible for hypertrophic cardiomyopathy in a Chinese family.
    Huang H; Chen Y; Jin J; Du R; Tang K; Fan L; Xiang R
    J Gene Med; 2022 Jan; 24(1):e3390. PubMed ID: 34558151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The p.(Cys150Tyr) variant in CSRP3 is associated with late-onset hypertrophic cardiomyopathy in heterozygous individuals.
    Salazar-Mendiguchía J; Barriales-Villa R; Lopes LR; Ochoa JP; Rodríguez-Vilela A; Palomino-Doza J; Larrañaga-Moreira JM; Cicerchia M; Cárdenas-Reyes I; García-Giustiniani D; Brögger N; Fernández G; García S; Santiago L; Vélez P; Ortiz-Genga M; Elliott PM; Monserrat L
    Eur J Med Genet; 2020 Dec; 63(12):104079. PubMed ID: 33035702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel gene-trap line reveals the dynamic patterns and essential roles of cysteine and glycine-rich protein 3 in zebrafish heart development and regeneration.
    Liang S; Zhou Y; Chang Y; Li J; Zhang M; Gao P; Li Q; Yu H; Kawakami K; Ma J; Zhang R
    Cell Mol Life Sci; 2024 Mar; 81(1):158. PubMed ID: 38556571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First identification of homozygous truncating CSRP3 variants in two unrelated cases with hypertrophic cardiomyopathy.
    Janin A; Bessière F; Chauveau S; Chevalier P; Millat G
    Gene; 2018 Nov; 676():110-116. PubMed ID: 30012424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutations in the human muscle LIM protein gene in families with hypertrophic cardiomyopathy.
    Geier C; Perrot A; Ozcelik C; Binner P; Counsell D; Hoffmann K; Pilz B; Martiniak Y; Gehmlich K; van der Ven PF; Fürst DO; Vornwald A; von Hodenberg E; Nürnberg P; Scheffold T; Dietz R; Osterziel KJ
    Circulation; 2003 Mar; 107(10):1390-5. PubMed ID: 12642359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscle LIM Protein Force-Sensing Mediates Sarcomeric Biomechanical Signaling in Human Familial Hypertrophic Cardiomyopathy.
    Riaz M; Park J; Sewanan LR; Ren Y; Schwan J; Das SK; Pomianowski PT; Huang Y; Ellis MW; Luo J; Liu J; Song L; Chen IP; Qiu C; Yazawa M; Tellides G; Hwa J; Young LH; Yang L; Marboe CC; Jacoby DL; Campbell SG; Qyang Y
    Circulation; 2022 Apr; 145(16):1238-1253. PubMed ID: 35384713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diagnostic yield, interpretation, and clinical utility of mutation screening of sarcomere encoding genes in Danish hypertrophic cardiomyopathy patients and relatives.
    Andersen PS; Havndrup O; Hougs L; Sørensen KM; Jensen M; Larsen LA; Hedley P; Thomsen AR; Moolman-Smook J; Christiansen M; Bundgaard H
    Hum Mutat; 2009 Mar; 30(3):363-70. PubMed ID: 19035361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a variant hotspot in MYBPC3 and of a novel CSRP3 autosomal recessive alteration in a cohort of Polish patients with hypertrophic cardiomyopathy.
    Lipari M; Wypasek E; Karpiński M; Tomkiewicz-Pajak L; Laino L; Binni F; Giannarelli D; Rubiś P; Petkow-Dimitrow P; Undas A; Grammatico P; Bottillo I
    Pol Arch Intern Med; 2020 Feb; 130(2):89-99. PubMed ID: 31919335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LIM domain-wide comprehensive virtual mutagenesis provides structural rationale for cardiomyopathy mutations in CSRP3.
    Chauhan PK; Sowdhamini R
    Sci Rep; 2022 Mar; 12(1):3562. PubMed ID: 35241752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human molecular genetic and functional studies identify TRIM63, encoding Muscle RING Finger Protein 1, as a novel gene for human hypertrophic cardiomyopathy.
    Chen SN; Czernuszewicz G; Tan Y; Lombardi R; Jin J; Willerson JT; Marian AJ
    Circ Res; 2012 Sep; 111(7):907-19. PubMed ID: 22821932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tcap gene mutations in hypertrophic cardiomyopathy and dilated cardiomyopathy.
    Hayashi T; Arimura T; Itoh-Satoh M; Ueda K; Hohda S; Inagaki N; Takahashi M; Hori H; Yasunami M; Nishi H; Koga Y; Nakamura H; Matsuzaki M; Choi BY; Bae SW; You CW; Han KH; Park JE; Knöll R; Hoshijima M; Chien KR; Kimura A
    J Am Coll Cardiol; 2004 Dec; 44(11):2192-201. PubMed ID: 15582318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular analysis of sarcomeric and non-sarcomeric genes in patients with hypertrophic cardiomyopathy.
    Bottillo I; D'Angelantonio D; Caputo V; Paiardini A; Lipari M; De Bernardo C; Giannarelli D; Pizzuti A; Majore S; Castori M; Zachara E; Re F; Grammatico P
    Gene; 2016 Feb; 577(2):227-35. PubMed ID: 26656175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypertrophic Cardiomyopathy: A Vicious Cycle Triggered by Sarcomere Mutations and Secondary Disease Hits.
    Wijnker PJM; Sequeira V; Kuster DWD; Velden JV
    Antioxid Redox Signal; 2019 Aug; 31(4):318-358. PubMed ID: 29490477
    [No Abstract]   [Full Text] [Related]  

  • 18. Genetic basis and outcome in a nationwide study of Finnish patients with hypertrophic cardiomyopathy.
    Jääskeläinen P; Vangipurapu J; Raivo J; Kuulasmaa T; Heliö T; Aalto-Setälä K; Kaartinen M; Ilveskoski E; Vanninen S; Hämäläinen L; Melin J; Kokkonen J; Nieminen MS; ; Laakso M; Kuusisto J
    ESC Heart Fail; 2019 Apr; 6(2):436-445. PubMed ID: 30775854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene mutations in apical hypertrophic cardiomyopathy.
    Arad M; Penas-Lado M; Monserrat L; Maron BJ; Sherrid M; Ho CY; Barr S; Karim A; Olson TM; Kamisago M; Seidman JG; Seidman CE
    Circulation; 2005 Nov; 112(18):2805-11. PubMed ID: 16267253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alpha-myosin heavy chain: a sarcomeric gene associated with dilated and hypertrophic phenotypes of cardiomyopathy.
    Carniel E; Taylor MR; Sinagra G; Di Lenarda A; Ku L; Fain PR; Boucek MM; Cavanaugh J; Miocic S; Slavov D; Graw SL; Feiger J; Zhu XZ; Dao D; Ferguson DA; Bristow MR; Mestroni L
    Circulation; 2005 Jul; 112(1):54-9. PubMed ID: 15998695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.