These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 18506076)

  • 1. On the use of musculoskeletal models to interpret motor control strategies from performance data.
    Cheng EJ; Loeb GE
    J Neural Eng; 2008 Jun; 5(2):232-53. PubMed ID: 18506076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Principles for learning horizontal-planar arm movements with reversal.
    Marconi NF; Almeida GL
    J Electromyogr Kinesiol; 2008 Oct; 18(5):771-9. PubMed ID: 17996462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational model of a primate arm: from hand position to joint angles, joint torques and muscle forces.
    Chan SS; Moran DW
    J Neural Eng; 2006 Dec; 3(4):327-37. PubMed ID: 17124337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Primate upper limb muscles exhibit activity patterns that differ from their anatomical action during a postural task.
    Kurtzer I; Pruszynski JA; Herter TM; Scott SH
    J Neurophysiol; 2006 Jan; 95(1):493-504. PubMed ID: 16251262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of the muscle force distribution in ballistic motion based on a multibody methodology.
    Czaplicki A; Silva M; Ambrósio J; Jesus O; Abrantes J
    Comput Methods Biomech Biomed Engin; 2006 Feb; 9(1):45-54. PubMed ID: 16880156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virtual musculo-skeletal model for the biomechanical analysis of the upper limb.
    Pennestrì E; Stefanelli R; Valentini PP; Vita L
    J Biomech; 2007; 40(6):1350-61. PubMed ID: 16824531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of trunk muscle forces and spinal loads estimated by two biomechanical models.
    Arjmand N; Gagnon D; Plamondon A; Shirazi-Adl A; Larivière C
    Clin Biomech (Bristol, Avon); 2009 Aug; 24(7):533-41. PubMed ID: 19493597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel theoretical framework for the dynamic stability analysis, movement control, and trajectory generation in a multisegment biomechanical model.
    Iqbal K; Roy A
    J Biomech Eng; 2009 Jan; 131(1):011002. PubMed ID: 19045918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Properties of synergies arising from a theory of optimal motor behavior.
    Chhabra M; Jacobs RA
    Neural Comput; 2006 Oct; 18(10):2320-42. PubMed ID: 16907628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the function of motor cortex: single-neuron models of how neural response is modulated by limb biomechanics.
    Ajemian R; Green A; Bullock D; Sergio L; Kalaska J; Grossberg S
    Neuron; 2008 May; 58(3):414-28. PubMed ID: 18466751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental evaluation of a computational shoulder musculoskeletal model.
    Dickerson CR; Hughes RE; Chaffin DB
    Clin Biomech (Bristol, Avon); 2008 Aug; 23(7):886-94. PubMed ID: 18502010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrating modelling and experiments to assess dynamic musculoskeletal function in humans.
    Fernandez JW; Pandy MG
    Exp Physiol; 2006 Mar; 91(2):371-82. PubMed ID: 16407475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of torque-related activity in primary motor cortex during a multijoint postural task.
    Herter TM; Kurtzer I; Cabel DW; Haunts KA; Scott SH
    J Neurophysiol; 2007 Apr; 97(4):2887-99. PubMed ID: 17267758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Musculoskeletal representation of a large repertoire of hand grasping actions in primates.
    Schaffelhofer S; Sartori M; Scherberger H; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2015 Mar; 23(2):210-20. PubMed ID: 25350935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An optimization principle for determining movement duration.
    Tanaka H; Krakauer JW; Qian N
    J Neurophysiol; 2006 Jun; 95(6):3875-86. PubMed ID: 16571740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating effective degrees of freedom in motor systems.
    Clewley RH; Guckenheimer JM; Valero-Cuevas FJ
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):430-42. PubMed ID: 18269978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determining effective subject-specific strength levels for forward dives using computer simulations of recorded performances.
    King MA; Kong PW; Yeadon MR
    J Biomech; 2009 Dec; 42(16):2672-7. PubMed ID: 19767003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic coordinate data for describing muscle-tendon paths: a mathematical approach.
    Carman AB; Milburn PD
    J Biomech; 2005 Apr; 38(4):943-51. PubMed ID: 15713315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased movement accuracy and reduced EMG activity as the result of adopting an external focus of attention.
    Zachry T; Wulf G; Mercer J; Bezodis N
    Brain Res Bull; 2005 Oct; 67(4):304-9. PubMed ID: 16182938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motor entropy in response to task demands and environmental information.
    Hong SL; Newell KM
    Chaos; 2008 Sep; 18(3):033131. PubMed ID: 19045469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.